Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification
View ORCID ProfileLauren J. Beesley, Bhramar Mukherjee
doi: https://doi.org/10.1101/2019.12.26.19015859
Lauren J. Beesley
1University of Michigan, Department of Biostatistics
Bhramar Mukherjee
1University of Michigan, Department of Biostatistics
Data Availability
MGI data are available after IRB approval to select researchers.
Posted December 30, 2019.
Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification
Lauren J. Beesley, Bhramar Mukherjee
medRxiv 2019.12.26.19015859; doi: https://doi.org/10.1101/2019.12.26.19015859
Subject Area
Subject Areas
- Addiction Medicine (399)
- Allergy and Immunology (708)
- Anesthesia (201)
- Cardiovascular Medicine (2923)
- Dermatology (249)
- Emergency Medicine (439)
- Epidemiology (12723)
- Forensic Medicine (12)
- Gastroenterology (827)
- Genetic and Genomic Medicine (4571)
- Geriatric Medicine (417)
- Health Economics (729)
- Health Informatics (2913)
- Health Policy (1069)
- Hematology (387)
- HIV/AIDS (924)
- Medical Education (423)
- Medical Ethics (115)
- Nephrology (468)
- Neurology (4341)
- Nursing (235)
- Nutrition (637)
- Oncology (2264)
- Ophthalmology (643)
- Orthopedics (258)
- Otolaryngology (324)
- Pain Medicine (278)
- Palliative Medicine (83)
- Pathology (500)
- Pediatrics (1196)
- Primary Care Research (495)
- Public and Global Health (6925)
- Radiology and Imaging (1524)
- Respiratory Medicine (915)
- Rheumatology (437)
- Sports Medicine (385)
- Surgery (486)
- Toxicology (60)
- Transplantation (210)
- Urology (179)