ABSTRACT
The monotonous routine of medical image analysis under tight time constraints has always led to work fatigue for many medical practitioners. Medical image interpretation can be error-prone and this can increase the risk of an incorrect procedure being recommended. While the advancement of complex deep learning models has achieved performance beyond human capability in some computer vision tasks, widespread adoption in the medical field has been held back, among other factors, by poor model interpretability and a lack of high-quality labelled data. This paper introduces a model interpretation and visualisation framework for the analysis of the feature extraction process of a deep convolutional neural network and applies it to abnormality detection using the musculoskeletal radiograph dataset (MURA, Stanford). The proposed framework provides a mechanism for interpreting DenseNet deep learning architectures. It aims to provide a deeper insight about the paths of feature generation and reasoning within a DenseNet architecture. When evaluated on MURA at abnormality detection tasks, the model interpretation framework has been shown capable of identifying limitations in the reasoning of a DenseNet architecture applied to radiography, which can in turn be ameliorated through model interpretation and visualization.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data used in this paper is collected from the publicly available MURA dataset (https://stanfordmlgroup.github.io/competitions/mura/) with permitted use from the data maintainer. No other data has been made available.