Abstract
The global spread of COVID-19 seriously endangers human health and even lives. By predicting patients’ individualized disease development and further performing intervention in time, we may rationalize scarce medical resources and reduce mortality. Based on 1337 multi-stage (≥3) high-resolution chest computed tomography (CT) images of 417 infected patients from three centers in the epidemic area, we proposed a random forest + cellular automata (RF+CA) model to forecast voxel-level lesion development of patients with COVID-19. The model showed a promising prediction performance (Dice similarity coefficient [DSC] = 71.1%, Kappa coefficient = 0.612, Figure of Merit [FoM] = 0.257, positional accuracy [PA] = 3.63) on the multicenter dataset. Using this model, multiple driving factors for the development of lesions were determined, such as distance to various interstitials in the lung, distance to the pleura, etc. The driving processes of these driving factors were further dissected and explained in depth from the perspective of pathophysiology, to explore the mechanism of individualized development of COVID-19 disease. The complete codes of the forecast system are available at https://github.com/keyunj/VVForecast_covid19.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported in part by the National Natural Science Foundation of China under Grant 82071921 and Zhejiang University special scientific research fund for COVID-19 prevention and control.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Data collection in Wuhan received ethical approval from Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (2020/0030). As a retrospective stduy, the need for informed consent was waived by the institutional review board.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The datasets from Wuhan Union Hospital, Western Campus of Wuhan Union Hospital, and Jianghan Mobile Cabin Hospital were used under the license of the current study and are not publicly available.