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Abstract 

The global spread of COVID-19 seriously endangers human health and even lives. By 

predicting patients' individualized disease development and further performing intervention in 

time, we may rationalize scarce medical resources and reduce mortality. Based on 1337 multi-

stage (≥3) high-resolution chest computed tomography (CT) images of 417 infected patients 

from three centers in the epidemic area, we proposed a random forest + cellular automata 

(RF+CA) model to forecast voxel-level lesion development of patients with COVID-19. The 

model showed a promising prediction performance (Dice similarity coefficient [DSC] = 71.1%, 

Kappa coefficient = 0.612, Figure of Merit [FoM] = 0.257, positional accuracy [PA] = 3.63) 

on the multicenter dataset. Using this model, multiple driving factors for the development of 

lesions were determined, such as distance to various interstitials in the lung, distance to the 

pleura, etc. The driving processes of these driving factors were further dissected and explained 

in depth from the perspective of pathophysiology, to explore the mechanism of individualized 

development of COVID-19 disease. The complete codes of the forecast system are available at 

https://github.com/keyunj/VVForecast_covid19.  
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Introduction 1 

The outbreak of COVID-19 has put enormous pressure on global health services. The World 2 
Health Organization has classified COVID-19 as a pandemic1. The development of infected 3 
patient’s condition is rapid and unpredictable.  Some patients can progress to a severe or critical 4 
state within 48 hours2. About 15% of COVID-19 infections in Wuhan, China, were reported to 5 

be severe3. Recent reports indicated that case fatality rate is of over 55% among critical cases, 6 
which rises sharply with age and underlying comorbid diseases4. The progression to severe 7 
disease has brought great pressure to medical services, resulting in the failure of timely 8 
allocation of intensive care resources, which further brings great risks to patients' lives. Early 9 
and accurate assessment of disease dynamics and prediction of disease trends is critical, since 10 

timely intervention treatment can effectively reduce the occurrence of severe diseases and 11 
improve the prognosis of patients. 12 

Various laboratory indicators have been used to assess the severity of the patients with 13 
infectious pneumonia and to guide clinical interventions, such as neutrophils lymphocyte ratio 14 
(NLR)5-7, lactic acid and D-dimer level8,9 etc. Researchers also adopt acute physiology and 15 
chronic health evaluation (APACHE-II) score system to predict the prognosis of acute 16 
respiratory distress syndrome (ARDS)9. These existing methods attempt to explore the 17 

relevance between some biomarkers and the severity of the disease on a population level, which 18 
are insufficient to predict the specific development of pulmonary lesions. 19 

Chest imaging, especially CT scan, is important for the diagnosis and management of COVID-20 
19 patients. High resolution CT scan (HRCT) objectively demonstrates pulmonary lesions and 21 
enables us to better understand the pathogenesis of the disease. Various studies have been 22 

conducted to diagnose, detect and segment the COVID-19 lesions using CT scans10-14. Also, 23 

through serial CT examinations, the evolution of the disease can be observed and understood15-24 
18. It is of more clinical significance to predict future trend of lesion development than to 25 
analyze the development in the past16,19,20. Up to now, however, chest CT based prognostic 26 

models mainly focus on predicting whether a patient will progress to severe disease or not7,16, 27 
which is a two-class classification problem. The voxel-level development prediction of 28 

pneumonia lesions has not been explored in previous studies. It is a much more challenging 29 
task due to limited number of CT examinations, large and unequal examination intervals, rapid 30 

and changeable lesion development, etc. Besides, the development of pulmonary infection 31 
varies significantly from patient to patient, and even from lobe from lobe. 32 

In this study, we retrospectively analyzed evolution rules of lesions based on multi-stage chest 33 
CT images of 417 COVID-19 patients from three centers and proposed an artificial intelligence 34 
(AI) system to forecast the development of lesions in the three-dimensional space. The problem 35 

caused by uneven intervals between multi-stage CT examinations was overcome by the fusion 36 
of spatio-temporal information. Additionally, by measuring the driving factors of lesion 37 

evolution, the pathogenesis of COVID-19 was explained, and the time course of lesion 38 
absorption and expansion was tracked and analyzed.  39 
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Result 1 

Datasets for system development and evaluation 2 

A total of 2877 3D CT volumes of 1505 patients with COVID-19 were collected from three 3 
centers in Wuhan from February 5 to April 27, 2020. Because the forecast system was trained 4 
by the dynamic changes between the 1st and 2nd stage CT volumes and then validated using the 5 
3rd or later stage, only patients with at least three stages of CT volumes were selected. We 6 

screened out 636 patients with single stage and 452 patients with 2 stages, and finally obtained 7 
417 patients with at least 3 stages. Therefore, 1337 CT volumes from 417 patients were used 8 
for evaluating our proposed forecast system for lesion development (detailly described in 9 
Methods and Extended data | Table 1).  10 

 11 

Construction of the AI System for lesion forecast 12 

Lesions in CT of COVID-19 patients are classified into two major types: ground-glass opacity 13 

(GGO) and consolidation. GGO is defined as an area with slightly and homogeneously 14 
increased in density that does not obscure underlying vascular markings. The consolidation 15 

component is defined as an irregular opaque area that completely blurs the underlying vascular 16 
markings. 17 

We developed an AI system, which directly took two-stage CT data as input to perform voxel-18 

level forecast of lesion development. The system consists of four parts: data pre-processing, 19 

lung registration, driving factor generation, and lesion development simulation. Firstly, three 20 
deep learning models were developed to extract three segmentation masks, i.e. a 3D 21 
convolutional neural network (CNN) for segmenting the left and right lung into five lobes on 22 

all CT scans, a 2.5D CNN for extracting various tubular adjacent interstitials (TAI) including 23 
bronchial bundles, vascular bundles, central lobular stroma, and a semi-automatic method for 24 
segmenting the lesion regions. Secondly, all CT scans from the same patient were cropped and 25 

then aligned to the first stage CT volume based on the extracted lobe masks, using rigid 26 
transformation and non-linear B-spline transformation. Thirdly, we extracted three additional 27 

driving factors related to lesion development, including the distance map to the margin of lobe 28 
mask, distance map to the center of lesion mask, and distance map to the centerline of TAI. 29 
Finally, the lesion regions in the third and subsequent stages were predicted based on the 30 

extracted information from previous two stages. 31 

In the abovementioned final part, three voxel-level lesion development forecast models are 32 

proposed: recurrent neural network driven by normal distribution over time (RNN-NDT), 33 
recurrent neural network driven by normal distribution over time + cellular automaton (RNN-34 

NDT+CA), and random forest classification + cellular automaton (RF+CA). Based on 35 
empirical test, the third model (RF+CA) with the best performance was selected to perform the 36 
whole study. The workflow of this machine-learning based forecast system is shown in Figure 37 

1 and Extended data | Figure 1. 38 
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Performances of forecast system 1 

Spatio-temporal pattern analysis  2 

To validate the proposed forecast model, we compared the simulation results with the actual 3 
lesion distribution in the corresponding stage. Figures 2 and 3 are comparisons between the 4 
simulated results obtained by the proposed model and the actual lesions of two patients. The 5 
two patients’ conditions were severe and non-severe, respectively. From the follow-up records, 6 

the pulmonary lesions in the severe patient progressed rapidly and this patient was eventually 7 
admitted to the intensive care unit (ICU). The non-severe patient was eventually discharged 8 
with a better health condition. It can be found that the overall spatial distribution of lesions in 9 
the simulation results is close to the real situation in the 3rd stage CT image. The predicted 10 
lesion development status in the next 5 and 10 days indicates that multiple lesions are scattered 11 

in the lung of the patient in Figure 2. Although consolidation area has shrunk, the GGO area 12 
has expanded, and more lesions have evolved in the right inferior lobe and the left inferior lobe. 13 

The forecast result indicates that the patient would develop into a severer condition. In Figure 14 
3, the patient’s lesion area will become more compact in the next 5 and 10 days according to 15 
the prediction result. Although consolidation area has expanded, the area of GGO has 16 
significantly reduced, and lots of obvious cord signs have been formed. Although several lesion 17 

areas have indeed expanded, some straight consolidation cords have appeared on the borders 18 
of lung (Extended data | Figure 2, 3), indicating a trend of improvement in the future21. 19 

Figure 4a, b demonstrate the trend curve of whole lesion volume development in five 20 
pulmonary lobes of these two patients. The lesion development in different pulmonary lobes 21 
of the same patient shows different trends. Figure 4c shows the Sankey diagrams visualizing 22 

the conversion pattern between the three types of areas (normal area, GGO, and consolidation) 23 

in the lung of the severe case. In the progression from the 3rd CT examination to the 5th day 24 

after, approximately 12.79% (535.70 cm3) of the lungs of this severe patient has undergone 25 
intensive lesion evolution. As for the flow-out process, normal area is the category with the 26 

largest volume loss (131.39 cm3), most of which has evolved into GGO. A large portion of 27 
consolidation (85.64 cm3) has become normal. A small amount of GGO (21.83 cm3) has 28 
evolved into consolidation. As for the flow-in process, GGO is the category with the largest 29 
volume gain (111.20 cm3), indicating that GGO grows at a higher speed and tends to be more 30 

stable than other types. In the progression from the 5th to 10th day after the 3rd CT examination, 31 
approximately 14.53% of the lung area (608.46 cm3) of this patient has undergone intensive 32 
lesion evolution. As for the flow-out process, the normal area remains to be the largest volume 33 
loss category (147.95 cm3). Most of the loss has evolved into GGO (125.01 cm3). A small part 34 
of consolidation has evolved into normal area (40.09 cm3). As for the flow-in process, GGO is 35 

the category with the largest gains (136.01 cm3), indicating that GGO grows at a higher speed 36 

and tends to be more stable than other types.  37 
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Accuracy of voxel-level lesion development forecast models 1 

Three forecast models, RF+CA, RNN-NDP and RNN-NDP+CA, were developed in this study. 2 
To quantitatively evaluate their prediction performance, the evolution of lesions in each patient 3 
was compared with actual lesions at corresponding stage point by point. Patients were divided 4 
into three cohorts corresponding to three different hospitals and each cohort contained 245, 78 5 
and 104 patients, respectively. The development of the whole lesion region, GGO subregion 6 

and consolidation subregion were evaluated, and the resulting confusion matrix is shown in 7 
Table 1a. DSC of 71.1, Kappa of 0.612, FoM of 0.257, and PA of 3.63 were obtained in the 8 
dataset consisting of Cohort 1, 2 and 3 for RF+CA model. DSC of 65.5, Kappa of 0.567, FoM 9 
of 0.249, and PA of 5.16 were obtained in the dataset consisting of Cohort 2 and 3 for deep 10 
leaning with normal distribution prior model; DSC of 70.2, Kappa of 0.610, FoM of 0.214, and 11 

PA of 4.35 were obtained in the dataset consisting of Cohort 2 and 3 for DNN+CA. Due to the 12 

small proportion of lesion and scattered distribution of consolidation region in the whole lung, 13 

the prediction accuracy of all models including RF+CA is not sufficiently high. However, the 14 
RF+CA model has better reliability and higher accuracy than the other two models, especially 15 
in terms of Kappa and FoM coefficients, indicating that the RF+CA model is more suitable for 16 
the prediction of lesion development. In the following study, we use only the RF+CA model. 17 

Subset analysis 18 

Most of the patients included in this study recorded clinical information such as BMI and 19 
underlying diseases. For an in-depth understanding of the lesion development forecast system 20 

and characteristics of different population with COVID-19, we further evaluated the proposed 21 
model on six subsets of test cohorts based on gender, age (≤50 and >50 years), the interval 22 

between 2nd and 3rd CT examinations (≤7 days and >7 days), BMI (body mass index, 23 

underweight [≤18.5], normal weight and overweight [18.5~29.9], obesity [≥30]), whether 24 

suffering from underlying diseases (diabetes, hypertension, cardiovascular disease, cancer, 25 
chronic kidney disease, etc.), and whether in a critical condition22. Extended data | Table 1 26 

lists the distribution of patients in the six subsets. Table 1b shows DSC, Kappa, FoM, and PA 27 
for the six subsets.  28 
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Driving factors of lesion evolution 1 

After training the random forest, the out-of-bag data can be used to measure the importance of 2 
each driving factor. As shown in Figure 5a, the distance map from the margin of lung region 3 
and that from centerlines of various TAI (blood vessels, micro bronchiole, intralobular septum, 4 
interlobular septum, etc.) have the greatest impact on the prediction accuracy. Multi-stage 5 
images of some patients are shown in Figure 5b and Extended data | Figure 2,3. The “3D+t” 6 

animation was further reconstructed and shown in Lesion development of the patients with 7 
COVID-19.mov. The most important driving factor is the distance to the lung margin, which 8 
is shown on the left of Figure 5b and Extended data | Figure 2. The second most important 9 
one is the distance to TAI centerline, which is shown on the right of Figure 5b and Extended 10 
data | Figure 3. 11 
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Discussion 1 

The prediction of lesion evolution is of major interest to COVID-19 management. The forecast 2 

of potential lesion growth could alert clinicians and help in early recognition of development 3 
of disease. It is particularly important for COVID-19 since some patients, including those who 4 
are young and previously healthy, can go from fine to flailing in the short term23. Take as an 5 
example the reaction case of Wenliang Li, a young Chinese doctor, called a cytokine storm24. 6 
According to the forecast of lesion development and clinical manifestations of patients, 7 

targeted treatment in advance may greatly reduce the mortality rate. 8 

The development of COVID-19 lesions is a complex nonlinear process. To find the best 9 
possible forecast model, three predictive models were established for comparison. The RF+CA 10 
model obtained the best accuracy and consistency (Kappa_3rd = 0.612, FoM_3rd = 0.257) in 11 

multicenter data. From the perspective of landscape pattern, PA indicates the localization 12 
precision of lung lesion. RF+CA yielded a smaller PA (PA_3rd = 3.63), which was superior to 13 
the other two methods. These results indicate that RF+CA can accurately mine the law of lesion 14 

development under large-scale simulations. It improves single-voxel calculation by focusing 15 
on the key spatial driving factors and the influence of cell neighborhood. The lesion 16 
development presents different mechanisms among different patients and even different lung 17 
lobes, which are ignored in the other two deep learning-based methods. In addition, the random 18 

forest method can also measure the importance of each driving factor according to its 19 
contribution to the prediction, which helps to explain the role of each driving factor in the lesion 20 

development. Parallel construction of random forest can greatly reduce its training time. 21 
Therefore, the CA model based on random forest has the advantages of high accuracy, fast 22 
training, and good interpretability. In the follow-up sections of this study, the proposed method 23 

refers to RF+CA. 24 

Based on the proposed forecast model, we explored driving factors that affect the development 25 

of the lesion anatomically, and further carried out image description and pathophysiological 26 
explanation for specific patients. The proposed lesion development forecast system is of 27 

prompt value for disease development evaluation and prognosis, as well as for the pathogenesis 28 
of COVID-19. From the perspective of imaging alone, by simulating and forecasting more 29 
multi-stage CT images of COVID-19 patients, dynamic analysis of radiological characteristics 30 
in the long course of the disease can be performed in a predictable manner at the early stage of 31 

the disease, and major imaging markers belonging to phenotypic characteristics that distinguish 32 
mild and severe diseases can be identified (One of the applications of this forecast system for 33 
lesion development system. See the section on radiomics analysis of the long course of disease 34 
in supplementary materials for details.). 35 

In this study, we conclude that the distance from the lung margin (Figure 5a, b) is the major 36 
driving factor for the transformation of non-lesion regions into lesion regions. Because the 37 
peripheral subpleural pulmonary lobules are better developed, blood flow and lymphatic are 38 

abundant, and the corresponding lobular interstitial inflammatory reaction is more obvious, the 39 
distribution pattern is mainly subpleural25-27. The unique pattern of growth of COVID-19 40 
lesions is parallel to pleural spread, that is, the stripe pattern is parallel to the pleura (Extended 41 
data | Figure 2, 3). The growth mechanism is presumed to be: Severe acute respiratory 42 
syndrome 2 (SARS CoV⁃2) virus invades lobular interstitium. When the peri-lobular stroma is 43 

mainly invaded, that is, the peri-alveolar stroma, this part of the lymphatic drainage direction 44 
is subpleural and interlobular septum25. The spread is also mainly around, diffusing to the 45 
pleura side and both side of the interlobular space. Because the distal end is restricted by the 46 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.17.20248377doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.17.20248377
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

pleura, the lesion growth can only be close to the pleura, spreading to both sides along the edge 1 

of the interlobular septum of mesh structure. The mutual fusion of the subpleural lesions causes 2 
the long axis of the lesion to be parallel to the pleura28. With the continuation of the disease, 3 
the lesions show a spreading trend from peripheral to centra. Two growth modes of lobular 4 

core interstitial and subpleural fuse together and gradually spread to most areas of the lung lobe 5 
and even diffuse to both lungs ("white lung")29. Another major factor is the distance to various 6 
interstitium (TAI centerline) (Figure 5a, b). It is intuitive that the virus first invades the 7 
bronchiole, causing bronchiolitis and peripheral inflammation. Then the virus spreads along 8 
various interstitials, and finally spreads to the lung parenchyma30. The thickening of the 9 

interlobular interstitial cord sign and fine mesh sign (crazy paving appearance) confirm that the 10 
growth of the virus mainly involves the interstitium of the lobules31. The interstitium in the 11 
lung includes the axial interstitium and the surrounding interstitium. The axial stroma includes 12 
bronchial bundles, vascular bundles, lymphatic vascular bundles, and central lobular stroma. 13 

The surrounding stroma includes the subpleural interlobular septum and the intralobular 14 
interstitium28,32.  15 

We divided the lesions into two categories according to the CT values: i. Ground glass opacity 16 

(GGO). In this type of lesion, local lung tissue has slightly increased density, but bronchial and 17 
blood vessels can still be clearly displayed; ii. consolidation. In this type of lesion, local lung 18 
tissue has increased density, and bronchial and vascular are unclear. In addition to the focal 19 
patches and mass signs, the highlights of fibrous bands, mesh signs, and subpleural linear bands 20 

are included in the consolidation range. The radiologic findings were evaluated by thresholding 21 
on CT values16. GGO and consolidation regions were determined by ranges of -700~-200 22 

Hounsfield units (HU) and -200~60 HU, respectively. Furthermore, when GGO intertwined 23 
with consolidation, the two were separated according to the sudden change in voxel’s CT level. 24 
The large area with low CT intensity was classified as GGO, while the other with relatively 25 

high CT values was classified as consolidation. In general, the lesion area varies in texture, size 26 
and location; The boundary of GGO generally has low gray contrast and blurred appearance. 27 

The consolidation area is relatively small, scattered and irregular. Automatic segmentation of 28 
these lesions is a challenging task. According to several published studies on segmentation of 29 

COVID-19 lesions, the segmentation accuracies are as follows: Ground-Glass Opacity has a 30 
DSC less than 65%, and Consolidation has a DSC less than 46%33-35. In the proposed forecast 31 
model, GGO has a DSC of 61.3%, and Consolidation has a DSC of 42.8%. Compared with the 32 
performance of lesion segmentation (which is a much easier task), the performance of our 33 

proposed forecast model is reasonable. 34 

In this study, some cases showed a co-occurrence of progression and organized repair of local 35 
lesions, that is, partial lesions improvement accompanied by some lesions aggravation or 36 
breeding of new lesions. In these cases of recurrent growth and evolution of multiple lesions, 37 

the proposed model can also achieve robust performance. After the comparative analysis of 38 
multi-stage images of the patients, we learned that the new lesions would replicate the growth 39 
process of earlier lesions, but only a delayed inflammatory response in some lung areas, rather 40 

than the aggravation or re-infection, as shown in Figure 2, 4a and Lesion development of the 41 
patients with COVID-19.mov in supplementary materials. Therefore, if a few lesions in the 42 
previous stages show a trend of improvement or deterioration, lesions in the subsequent stages 43 
will also develop in a step-by-step manner. Due to this development pattern, our proposed 44 
model is able to excavate the correlation between multiple lesions and various driving factors. 45 

Our proposed model was tested in various subsets and acceptable results were obtained. As 46 
shown in Table 1b, Kappa coefficient is greater than 0.60 in most of the 6 subsets, with a 47 
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satisfactory agreement. The FoM values in different subsets have significant heterogeneity. 1 

Patients with advanced age, underlying diseases, obesity, and severe illness tend to have lower 2 
FoM values. This is due to the rapid and complex development of lung lesions in these patients, 3 
which potentially reflects some of their individual physiological functions. For instance, 4 

patients with severe obesity (BMI≥35) may suffer from dyspnea due to the fat under the 5 
diaphragm. Fat produces a considerable amount of pro-inflammatory molecules called 6 
cytokines, i.e., an immune battle in the human body producing low-level background 7 
inflammation36, which is another important risk factor. The development of lesions is an 8 
organic and adaptive mechanism that affected by the characteristics of individuals. The changes 9 

of lesions are not only related to spatial variables, but also related to patients' basic clinical 10 
characteristics (age, gender, Body Mass Index), whether there is underlying disease, treatment 11 
methods, and dynamic changes in laboratory test indicators. These factors have great 12 
complexity and randomness. Therefore, the proposed RF+CA model still cannot fully consider 13 

the actual situation despite its superior performance over other models.  14 

In conclusion, voxel-level forecast model for the development of lesions is of great significance 15 

for personalized treatment of COVID-19 patients and the matching and coordination of limited 16 

medical resources in the future. We made a preliminary exploration to this challenging topic. 17 

Due to the limited patient data and the large interval between multi-stage CT examinations, the 18 

predictive ability of the proposed system still has room for improvement. We believe that the 19 

performance will improve if more cases are collected and analyzed. In addition, the prediction 20 

method can also be extended to the prediction of lesions development for other diseases, such 21 

as acute stroke. 22 
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Methods 1 

Data Collection 2 

We collected CT volumes from three different centers in Wuhan，which are Wuhan Union 3 

Hospital, Western Campus of Wuhan Union Hospital, and Jianghan Mobile Cabin Hospital. 4 

1337 standard 3D CT volumes of 417 subjects diagnosed as COVID-19 were selected. All CT 5 
scans were performed with patients in supine position, using one of the following scanners: 6 
SOMATOM Perspective, SOMATOM Spirit, or SOMATOM Definition AS+ (Siemens® 7 
Healthineers, Forchheim, Germany). Scanning was performed from the level of the upper chest 8 
entrance to the lower angle of the costal diaphragm, using the following parameters: detector 9 

collimation width 64 × 0.6  mm, 128 × 0.6  mm, 64 × 0.6  mm, 64 × 0.6  mm; tube voltage 10 

120 kv. The tube current was adjusted by the automatic exposure control system (Care dose 11 
4D; Siemens Healthineers). The slice thicknesses of the reconstructed image were 1.5 mm and 12 
1 mm, and the interval were 1.5 mm and 1 mm. In all cases, the upper limit of the interval 13 
between adjacent CT scans was 15 days, the average value was approximately 7 days. To utilize 14 
all data efficiently, all cases with more than 3 stages were split into sub-groups with 3 15 

consecutive stages using sliding window method. Finally, 503 sub-groups are collected as the 16 
experimental dataset in this study. 17 

Image annotation 18 

Three types of masks are required considering the characteristic of lesion development, 19 
including the whole lung region, various TAI and lesions caused by COVID-19. For simplicity, 20 

two categories of lung masks and two categories of lesions were determined, while the different 21 

TAI categories were regarded as the same class. Specifically, lung masks were divided into left 22 
and right lobes, while the lesions caused by COVID-19 were distinguished as GGO and 23 
consolidation, respectively.  24 

For lung and lesion mask, annotation procedure was applied in an automatic way: a vanilla 3D 25 
U-Net (Figure S1a, see supplementary methods for details) based on 60 manually annotated 26 

scans was trained to generate segmentation masks. Since lung segmentation was easy and 27 
achieved acceptable performance, there was no further modification performed. Due to the 28 
complicated background and various appearance of lesion, a refinement was performed after 29 

automatic segmentation by two well-trained experts (the two board-certified radiologists have 30 
12 and 21 years of experience, respectively) using a self-developed multi-stage simultaneous 31 

segmentation toolbox (https://github.com/weixr18/OCD_Slicer_Plugin/tree/release-32 
amd64/OpenCOVID_Detecter/CT_Annotate) based on 3D Slicer (https://www.slicer.org/). 33 

After their separate annotation, any differences were resolved through discussion and 34 
consensus. For TAI mask, a 2.5D segmentation framework, containing three vanilla 2D U-Nets 35 
(Figure S1 b, see supplementary methods for details), was designed to separate the tubular 36 
structure from complicated background, and trained on 49 scans that were manually annotated 37 
using Mimics (Materialise, Leuven, Belgium). 38 

Data pre-processing 39 

The HU value of CT volumes ranges from -2048 to 3071. For a clear view of lungs and tissues 40 
inside lungs, we truncated a window of [-1200,700], and normalized the value to float value as 41 
standard normal distribution. 42 
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Firstly, a lung segmentation network, i.e. vanilla 3D U-Net (The network structure is shown in 1 

Figure S1a in Supplementary methods), was trained on a dataset containing 60 chest CT scans. 2 
Then all volumes in our dataset were processed to generate the masks of left and right lung 3 
with five lobes. Similarly, lesion and TAI mask were generated using the abovementioned 4 

segmentation framework, and leaks outside the lung region were removed. The segmented TAI 5 
masks are shown in Figure 2, 3 in Result section. 6 

Then a cropping operation was performed to exclude complicated background. Note that the 7 
lung segmentation results were split into left and right lung lobe groups, and thus all volumes 8 
were cropped to contain the left or right lung lobe only. 9 

Since our proposed algorithm takes 2D images as input, all volumes are supposed to be sliced. 10 
Registration, consequently, is needed before doing such slicing operation, to keep consistence 11 
at voxel level between different stages. Specifically, a registration was applied to align the 12 

volumes for the same patient37 to the same coordinate system (extracted from the first stage of 13 
CT). Considering the characteristics of lung region and the fact that only the regions inside 14 
lungs were what we concern, we utilized an affine transformation first to initialize the 15 
alignment, followed by a B-spline transformation to refine38, based on the extracted lobe masks. 16 

All other segmentation masks extracted from the same CT volume were then transformed to 17 
the same coordinate based on the estimated transformation parameters. All these parameter 18 
estimation and transformation procedure were achieved using SimpleElastix in Python39.  19 

Based on the cropped and aligned 3D volumes, some driving factors, used in our RF+CA 20 

method later, were generated automatically. Driving factors are defined based on the 21 
distribution and pathology of abnormal regions, e.g., expanding through the tubular-system 22 

such as vessels and airways, spreading below the subpleural. The driving factors consist of 6 23 
categories, including original image intensity, lobe mask, TAI mask, distance map of each pixel 24 

to the margin of lobe mask, distance map to the center of lesion region, and distance map to 25 
the centerline of various TAI. 26 

Note that due to different lesion categories sharing similar characteristics, the distance map to 27 

the center of lesion mask was calculated based on the whole lesion regions yet ignoring the 28 

specific types. To extract the distance map of TAI, the centerlines were extracted first using 29 
the morphological thinning algorithm, and followed by the Euclidean distance transformation 30 
algorithm from Scipy in Python40. The other two distance maps were generated similarly. 31 

Finally, all these volumes were sliced. Slices in later stages were ignored for brevity, if the 32 
corresponding first stage contained no obvious lesions, unless the slices had considerable 33 

disease (the lesion region larger than 30 pixels). Different stages from the same patient were 34 
grouped for further analysis. Consequently, 35018 groups of multi-stage sequential images and 35 

their corresponding lesion masks along with driving factors were selected for further analysis. 36 
Note that each group contained 3 stages only. 37 

Estimate suitability using random forest algorithm 38 

Development suitability, namely the potential changing energy of each lesion categories, was 39 
estimated by applying random forest (RF) algorithm41 on slices of original images and 40 
corresponding driving factors from current stage. 41 

The RF model took each pixel along with its 15 × 15 surrounding neighbors from current stage 42 
as input. It was then supervised by the annotated lesion category of center pixel from the next 43 
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stage. The first two stages were used for training and the last stage was used for estimation and 1 

evaluation. Due to the class imbalance, which means background region dominated the image, 2 
balanced-subsampling and bootstrapping were utilized to explore the hard samples, and 100 3 
independent decision trees were used to increase estimation accuracy and generalization ability. 4 

Based on the estimated development suitability, the development probability for next stage was 5 
calculated, which was utilized in cellular automata (CA) simulation later. 6 

The most important step in this algorithm is to optimize different model parameters using the 7 
first two stages for different time, patients, and even lobes (i.e., left and right lung). It is 8 
intuitive that different model parameters need to be estimated since the development of disease 9 

in different patients varies. Besides, the relation of disease development between left and right 10 
lung lobe is not obvious in most cases, e.g., the lesion region is growing in left lung lobe, while 11 
the size is reducing in another lung lobe (in fact, considering the presence of fissure, the disease 12 
development progression varies in five lobes). Furthermore, the lesion progression speed and 13 

tendency would not be identical within the same lung lobe. Therefore, the RF model was 14 
finetuned when there were new stages incorporated as training samples to estimate lesion 15 
regions at later stages. 16 

Evaluation metric 17 

To evaluate the performance of the aforementioned algorithm, we considered the classic 18 

metrics used in object segmentation and land use and cover change (LUCC) task, respectively. 19 
DSC42 is widely used in object segmentation task to evaluate the similarity between prediction 20 

and annotation mask: 21 

𝐷𝑆𝐶 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
.                                                                    (5) 22 

Here 𝐴 and 𝐵 represent the set of ground-truth and the prediction, respectively. |⋅| denotes the 23 
number of pixels associated with the certain class label, e.g. the number of pixels predicted or 24 
annotated as GGO. When the prediction is similar to annotation in pixel level, the metric DSC 25 

is close to 1, otherwise 0. 26 

In LUCC tasks, Kappa coefficient and FoM are mostly adopted to verify model accuracy43,44. 27 
Kappa coefficient is a statistical measure of the reliability or consistency of internal raters, and 28 
defined as follows: 29 

𝐾𝑎𝑝𝑝𝑎 =
𝑝𝑜−𝑝𝑐

1−𝑝𝑐
, 𝑝𝑜 =

∑ 𝑇𝑃𝑘
𝐾
𝑘=1

𝑁
, 𝑝𝑐 =

∑ 𝑇𝑘𝑃𝑘
𝐾
𝑘=1

𝑁2  .   (6) 30 

Here, 𝐾 and 𝑁 represent the number of classes and the total number of samples, respectively. 31 

𝑇𝑃𝑘 , 𝑇𝑘  and 𝑃𝑘  represent the number of pixels correctly predicted as class 𝑘  (correct 32 

prediction), the number of pixels annotated as class 𝑘 (ground-truth) and the number of pixels 33 

predicted as class 𝑘 (prediction), respectively. In other words, 𝑝𝑜 represents the total observed 34 

accuracy and 𝑝𝑐  represents the chance agreement. The strength interpretation of Kappa 35 
coefficient is: slight [0.01-0.20]; fair [0.21-0.40]; moderate [0.41-0.60]; substantial [0.61-0.80]; 36 

nearly perfect [0.81-1.00]. 37 

FoM is a quantity used to measure the prediction performance. The formula is defined as 38 
follows: 39 

 𝐹𝑜𝑀 =
𝐵

𝐴+𝐵+𝐶+𝐷
                                                                    (7) 40 
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where 𝐴 is the error zone caused by the prediction of observed change as persistence; 𝐵 is the 1 

correct zone caused by the prediction of observed change as change; 𝐶 is the error zone caused 2 

by the prediction of observed change as wrong gaining category; 𝐷 is the error zone caused by 3 

the prediction of observed persistence as change. 4 

Additionally, to evaluate the location accuracy of predicted area, we proposed a metric named 5 

positional accuracy (PA) to measure the offset between predicted lesion region and ground-6 
truth, in pixel level, which is defined as followed, 7 

𝑃𝐴 = ∥∥𝐶𝑝 − 𝐶𝑔∥∥
2
                                                                 (8) 8 

where 𝐶𝑝 and 𝐶𝑔 are the equivalent mass center of prediction and annotation mask, respectively. 9 

Cellular automata simulation 10 

In addition to the development suitability, the lesion development is influenced by other factors, 11 
such as neighborhood effects, constraint restriction, and stochastic randomness. 12 

Neighborhood effects 𝛺 play a vital role in CA algorithm. In the CA model, there are local 13 

interactions between cells, and the state（diseased or not）of a cell at the next moment is 14 

determined by its neighbors. e.g., a normal cell has an extremely high probability to change to 15 

GGO in the next stage, when the surrounding cells are simulated as GGO at current stage. The 16 
most frequently employed neighborhood models are von Neymann, Moore and extended 17 

square neighborhood. To avoid disparate effects, we used Moore neighborhood45 in this study. 18 

Constraint factor 𝑃𝑐 is a limitation to prevent lesions from presenting outside lung mask. The 19 

undevelopable area is determined in advance, i.e. the cells outside of lung region are restricted 20 

from lesion development. 21 

Stochastic factor 𝑃𝑟, intuitively, is introduced to increase randomness and thus generalization 22 

ability. The evolution of lesions is not only affected by various deterministic factors including 23 
the development suitability, but also random factors such as whether the patient suffers from 24 
basic diseases, psychological state, treatment mode etc. 25 

Considering the above four parts, the probability that a single cell will be transformed at time 26 

𝑡 + 1 is defined as: 27 

𝑃𝑖,𝑘
𝑡+1 = 𝑃𝑑𝑖,𝑘

𝑡+1 ∗ 𝛺𝑖,𝑘
𝑡+1 ∗ 𝑃𝑐𝑖

𝑡+1 ∗ 𝑃𝑟                                            (4) 28 

Here 𝑃𝑖,𝑘
𝑡+1  is the probability that cell 𝑖  converts to class 𝑘  at time 𝑡 + 1 . 𝑃𝑑𝑖,𝑘

𝑡+1  is the 29 

development suitability of cell 𝑖 belonging to class 𝑘 at time 𝑡 + 1. Therefore, 𝑃𝑖,𝑘
𝑡+1 was fed 30 

into CA model to simulate development of infectious area.  31 

Combing the calculated development suitability, neighborhood effects, constraint factors and 32 
stochastic factors, the probability of transformation for every single cell, i.e. pixel, was 33 
determined. Then the simulation using CA algorithm46 47 was applied by setting the simulation 34 
steps to half of the time interval between the current and next stage. 35 

In summary, the RF+CA algorithm is divided into following steps: (1) Construct a set of data 36 

(driving factors) related to the development of infectious area. (2) The RF model is trained, 37 
using original images and driving factors from the first stage, to predict lesion potential 38 
(development suitability in CA algorithm) for the second stage. (3) The estimated RF model is 39 
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utilized to predict development suitability for the third stage based on the existing image and 1 

driving factors from the second stage. (4) The development suitability, neighborhood effects, 2 
constraint factors and stochastic factors are combined to simulate the lesion development using 3 
CA algorithm. (5) Considering the time interval and disease evolution speed based on the 4 

previous data, the final probability of whether some regions of lungs will develop into lesion 5 
or not in the future is predicted. The workflow of RF+CA model is shown in Figure 1. 6 

Model to model comparison  7 

Deep leaning with normal distribution prior  8 

During the manual annotation of lesion mask, we noted that the development of most lesions 9 

followed a gaussian-like distribution48,49 of time 𝑇 (See Figure S2 and Supplementary methods 10 

for details). Therefore, it is a reliable hypothesis that the lesion caused by COVID-19 follows 11 
the same distribution family with different parameters in different areas (The growth pattern of 12 
multiple lesions in the same patient is consistent. See the Discussion section of the main text 13 
for details).  14 

Therefore, a 3D CNN was trained to estimate the distribution parameters for each pixel given 15 

original image slices from more than two stages. To introduce the time relevant information, 16 
Gated Recurrent Unit (GRU)50, a variant of convolutional Long Short-Term Memory (conv-17 
LSTM), was utilized to enhance time interval related information flow. The outputs of decoder 18 

were parameters of the predetermined gaussian distribution, 𝜇  and 𝜎2 . For stability, the 19 

expectation 𝜇 was set as the offset from current position to the peak, and log𝜎2 was estimated 20 

instead. In addition, considering the complicated mechanism of lesion development, we used 21 
sigmoid function, an extra asymmetric function, to control the development speed before and 22 

after the peak moment. Consequently, the lesion at any moment, theoretically, could be 23 
predicted given these distribution parameters estimated approximately. However, limited by 24 

the data used for estimation, the precision and consistency decreased with increasing time 25 
interval. The workflow is also shown in Figure S2 of Supplementary methods. 26 

Deep learning-based CA  27 

We used the deep learning model described in the previous section to generate development 28 
suitability. Different from RF model, which was trained only on one group of slices at each 29 
stage, this model was trained on a subset of extracted slices. Similarly, the output was regarded 30 

as development suitability 𝑃𝑑  used in CA algorithm. It was combined with neighborhood 31 

effects 𝛺 , constraint factor 𝑃𝑐  and stochastic factor 𝑃𝑟  to determine the transformation 32 
probability for each pixel. The overall workflow is shown in Figure S3 of Supplementary 33 

methods. 34 
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Table 1 The performance of the forecast system. a. Performance comparison of three models: 
RF+CA, DNN, DNN+CA. b. The performance of the RF+CA model in six subsets. 
 

a. 

Methods Cohort 
DSC (%, std) Kappa (std) FoM (std) PA (pixel, std) 

Whole GGO Consolidation Whole 

RF+CA 

Cohort 1 71.4 (15.2) 62.1 (18.9) 36.8 (26.8) 0.620 (0.149) 0.248 (0.122) 3.37 (2.40) 

Cohort 2 72.3 (12.2) 59.7 (14.1) 31.3 (16.6) 0.607 (0.107) 0.264 (0.073) 5.60 (2.94) 

Cohort 3 68.9 (18.0) 59.1 (20.1) 44.1 (31.7) 0.595 (0.170) 0.259 (0.109) 2.21 (1.27) 

All (Cohort 1, 2 and 3) 71.1 (15.1) 61.3 (18.1) 42.8 (25.5) 0.612 (0.143) 0.257 (0.109) 3.63 (2.49) 

RNN-NDP 

Cohort 2 65.8 (14.4) 56.6 (15.4) 29.6 (19.4) 0.571 (0.135) 0.185 (0.089) 7.83 (4.25) 

Cohort 3 62.0 (21.5) 52.4 (18.8) 43.7 (36.0) 0.537 (0.180) 0.255 (0.128) 2.99 (2.74) 

Allꞌ (Cohort 2 and 3) 65.5 (16.6) 56.3 (16.7) 39.9 (26.4) 0.567 (0.153) 0.249 (0.121) 5.16 (3.58) 

RNN-NDP+CA 

Cohort 2 69.1 (14.1) 57.8 (13.7) 28.7 (14.5) 0.590 (0.124) 0.168 (0.086) 6.61 (3.68) 

Cohort 3 70.4 (16.1) 58.4 (16.3) 28.9 (21.4) 0.611 (0.141) 0.232 (0.082) 2.69 (2.39) 

Allꞌ (Cohort 2 and 3) 70.2 (14.5) 58.0 (15.2) 28.8 (18.8) 0.610 (0.132) 0.214 (0.092) 4.35 (2.92) 

  

b. 

Note: RF+CA, Random forest + cellular automata; RNN-NDP, recurrent neural network 

driven by normal distribution over time; RNN-NDP+CA, recurrent neural network driven by 

normal distribution over time + cellular automata; GGO, Ground-glass opacity; DSC, Dice 

Similarity Coefficient; FoM, Figure of Merit index; PA, Positional Accuracy. Std, Standard 

deviation. Std, standard deviation. Cohort 1 was used as a discovery cohort for RNN-NDP 

(Training and internal validation).

Subset 
DSC (%, std) Kappa (std) FoM (std) PA (pixel, std) 

Whole GGO Consolidation Whole 

Gender 
Male 70.3 (14.8) 58.4 (18.7) 31.2 (18.9) 0.611 (0.146) 0.221 (0.110) 3.91 (2.66) 

Female 72.4 (15.4) 57.8 (16.3) 44.2 (32.4) 0.614 (0.120) 0.222 (0.102) 3.15 (2.06) 

Age 
≤ 50 71.0 (15.5) 54.2 (19.2) 37.8 (27.7) 0.597 (0.145) 0.249 (0.100) 3.25 (2.32) 

 > 50 70.4 (15.1) 60.1 (16.9) 36.4 (24.8) 0.616 (0.144) 0.202 (0.112) 3.91 (2.60) 

Time 

Interval 

≤ 7 days 74.8 (10.8) 67.4 (10.7) 36.7 (14.6) 0.675 (0.099) 0.053 (0.057) 4.29 (2.92) 

 >7 days 70.6 (15.5) 56.8 (18.5) 36.1 (26.5) 0.603 (0.146) 0.242 (0.096) 3.59 (2.46) 

BMI 

Underweight 70.4 (14.2) 59.3 (16.1) 34.2 (22.8) 0.613 (0.113) 0.213 (0.105) 3.11 (2.62) 

Normal and Overweight 70.2 (13.7) 62.7 (15.8) 31.2 (14.3) 0.626 (0.096) 0.228 (0.091) 3.70 (2.05) 

Obesity 71.9 (15.1) 64.8 (17.3) 33.6 (19.6) 0.617 (0.137) 0.159 (0.063) 4.49 (2.78) 

Underlying 

diseases 

Underlying diseases 72.8 (13.3) 65.1 (15.5) 35.1 (23.2) 0.629 (0.131) 0.189 (0.086) 4.17 (2.12) 

Non-underlying diseases 69.8 (9.79) 64.2 (13.9) 34.9 (15.3) 0.610 (0.116) 0.228 (0.102) 3.23 (1.71) 

Severe illness 
Severe 73.2 (13.9) 65.3 (14.9) 34.3 (14.1) 0.642 (0.137) 0.178 (0.073) 4.56 (2.21) 

No severe 70.1 (10.3) 58.7 (11.7) 31.7 (10.8) 0.607 (0.091) 0.221 (0.071) 3.18 (1.89) 
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Extended data | Table 1 Baseline clinical characteristics of patients in the study.  
Characteristics Number (%) 

Gender 
Male 717 (47.6%) 

Female 788 (52.4%) 

Age 

≤ 20 4 (0.2%) 

21-40 255 (16.9%) 

41-60 532 (35.4%) 

61-80 649 (43.2%) 

> 80 65 (4.3%) 

Stage 

1 636 (42.2%) 

2 452 (29.1%) 

≥ 3 417 (27.7%) 

Stage ≥ 3 

 

Time interval 
≤7 days 198 (47.5%) 

> 7 days 219 (52.5%) 

BMI 

Underweight 27 (6.5%) 

Normal 162 (38.8%) 

Overweight 57 (13.7%) 

Obesity 38 (9.1%) 

Underlying diseases 
Underlying diseases 183 (43.9%) 

Non-underlying diseases 101(24.2%) 

Severe illness 
Severe 104 (24.9%) 

Non severe 180 (43.2%) 
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Figure 1. Lesion evolution forecast by random forest and cellular automata (RF+CA). TAI: Tubular 
adjacent interstitials. Lobe: left and right lung lobes. The green pixels in lesion mask and development 
suitability image denote GGO and blue ones are consolidation. Note that all the driving factors are generated 
as volumetric data and followed by the slice extraction operation. 
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Figure 2. Simulation results of multi-stage evolution of lesion and non-lesion area based on the RF+CA model from 

a 57-year-old male patient with hypertension. a images based on the 1st stage CT image of the patient; b images based 

on the 2nd stage CT image showing the actual lesion evolution; c, d images based on the simulated lesion evolution and the 

3rd stage of the actual lesion evolution, respectively; e, f images based on the predictions of the lesion in the next 5 and 10 

days from the 3rd stage of CT according to the trend of the disease. Column 1: Lesion location on 2D slicing. Column 2: 

Distribution of lesions in the five lung lobes on 2D slicing. Column 3: Distribution of lesions with TAI segmentation in 3-

D axial view. Column 4: Distribution of lesions with TAI segmentation in 3D coronal view. Column 5: 3D 

reconstruction of the whole lesions. Column 6: 3D reconstruction of solid lesions. Dark blue area is GGO and light-

yellow area is consolidation.



a

b

c

d

e

f

Figure 3. Simulation results of multi-stage evolution of lesion and non-lesion area based on the RF+CA 

model from a 36-year-old female patient. a images based on the 1st stage CT image of the patient; b images 

based on the 2nd stage CT image showing the actual lesion evolution; c, d images based on the simulated lesion 

evolution and the 3rd stage of the actual lesion evolution, respectively; e, f images based on the predictions of the 

lesion in the next 5 and 10 days from the 3rd stage of CT according to the trend of the disease.
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Figure 4. Comparison of simulation and actual trends of lesion development in five pulmonary lobes. 

According to the development of lesions in the early stages, the forecast system further predicts the trend of 

lesion development in the next 5 and 10 days from the 3
rd

 CT examination for severe patient and the next 7 and 

14 days from the 3rd CT examination for non-severe patient. a. The development of recurrent lesions in severe 

patient; b. The gradually vanishing of multiple lesions in non-severe patient; c. Sankey diagram for the forecast of 

development of pulmonary lesions of severe patient. In a and b, Light colored dots and long dark lines in each group 

represent actual and simulated trends of the whole lesion development in the same area, respectively. The plots on the 

right are smoothed version. No obvious lesion was found in the right upper or middle lobe for non-severe patient. In 

c, the transition classes are designated as: Normal, GGO, Consolidation. 
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Figure 5. Driving factor of lesion development in patients with COVID-19. a. Measurement 

of importance of each driving factor. TAI denotes various tubular adjacent interstitials, which 

included bronchial bundles, vascular bundles, central lobular stroma etc. b. In the images on the 

left, lesions are mainly scattered around the peripheral areas of lungs. In the images on the right, 

lesions grow along TAI. 



 

Extended data | Figure 1. The flowchart of lesion evolution simulation via the CA based forecasting 
system.
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Extended data | Figure 2. Multi-stage samples where lesion develops below the subpleural and along 
some vessels. The red arrows point to the lesions. Each case contains 3 stages, forward from top to bottom 
(blue arrow). 
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Extended data | Figure 3. Multi-stage samples where lesion develops along the tubular adjacent 
interstitials (TAI). The red arrows point to the lesions. Each case contains 3 stages, forward from top to 
bottom (blue arrow). 
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