ABSTRACT
SARS-CoV-2 and other microbes within aerosol particles can be partially shielded from UV radiation. The particles refract and absorb light, and thereby reduce the UV intensity at various locations within the particle. Shielding has been demonstrated in calculations of UV intensities within spherical approximations of SARS-CoV-2 virions that are within spherical particles approximating dried-to-equilibrium respiratory fluids. The purpose of this paper is to calculate the survival fractions of virions (i.e., the fractions of virions that can infect cells) within spherical particles approximating dried respiratory fluids, and to investigate the implications of these calculations for using UV light for disinfection. The particles may be on a surface or in air. In this paper the survival fraction (S) of a set of virions illuminated with a UV fluence (F, in J/m2) is approximated as S=exp(-kF), where k is the UV inactivation rate constant (m2/J). The average survival fractions (Sp) of all the simulated virions in a particle are calculated using the calculated decreases in fluence. The results show that virions in particles of dried respiratory fluids can have significantly larger Sp than do individual virions. For individual virions, and virions in 1-, 5-, and 9-µm particles illuminated (normal incidence) on a surface with 260-nm UV light, the Sp = 0.00005, 0.0155, 0.22 and 0.28, respectively, when kF=10. The Sp decrease to <10−7, <10−7, 0.077 and 0.15, respectively, for kF=100. Calculated results also show that illuminating particles with UV beams from widely separated directions can strongly reduce the Sp. These results suggest that the size distributions and optical properties of the dried particles of virion-containing respiratory fluids are likely important in effectively designing and using UV germicidal irradiation systems for microbes in particles. The results suggest the use of reflective surfaces to increase the angles of illumination and decrease the Sp. The results suggest the need for measurements of the Sp of SARS-CoV-2 in particles having compositions and sizes relevant to the modes of disease transmission.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Hill and Doughty did this work as part of their employment at Army Research Lab.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
There were no human subjects. The purpose is to improve UV inactivation techniques. The study shows that after treatment with UV light, the survival fraction of viruses in particles can be larger than in individual virions. This is a numerical modeling study.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The codes to make the figures and calculate the numbers in the table are available upon request from steven.c.hill32.civ@mail.mil. Codes to calculate numbers that were used in calculating the values and figures shown here are available as described in the paper by David Doughty, Steven Hill and Dan Mackowski, "Viruses such as SARS-CoV-2 can be partially shielded from UV radiation when in particles 1 generated by sneezing or coughing: Numerical simulations", J Quant Spectrosc Radiative Transfer 2021. https://doi.org/10.1016/j.jqsrt.2020.107489