Abstract
COVID-19 poses a dramatic challenge to health, community life, and the economy of communities across the world. While the properties of the virus are similar from place to place, the impact has been dramatically different from place to place, due to such factors as population density, mobility, age distribution, etc. Thus, optimum testing and social distancing strategies may also be different from place to place. The Epidemiology Workbench provides access to an agent-based model in which a community’s demographic, geographic, and public health information together with a social distancing and testing strategy may be input, and a range of possible outcomes computed, to inform local authorities on coping strategies. The model is adaptable to other infectious diseases, and to other strains of coronavirus. The tool is illustrated by scenarios for the cities of Urbana and Champaign, Illinois, the home of the University of Illinois at Urbana-Champaign. Our calculations suggest that massive testing is the most effective strategy to combat the likely increase in local cases due to mass ingress of a student population carrying a higher viral load than that currently present in the community.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by Illinois Informatics and theACM/Intel SIGHPC Computational and Data Science Fellowship, 2017 cohort.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The authors have provided all code and computer experiment data online at a public GitHub repository, including the script to setup a cloud computing instance.