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Abstract

COVID-19 poses a dramatic challenge to health, community life, and the economy
of communities across the world. While the properties of the virus are similar from
place to place, the impact has been dramatically different from place to place, due
to such factors as population density, mobility, age distribution, etc. Thus, optimum
testing and social distancing strategies may also be different from place to place. The
Epidemiology Workbench provides access to an agent-based model in which a commu-
nity’s demographic, geographic, and public health information together with a social
distancing and testing strategy may be input, and a range of possible outcomes com-
puted, to inform local authorities on coping strategies. The model is adaptable to
other infectious diseases, and to other strains of coronavirus. The tool is illustrated by
scenarios for the cities of Urbana and Champaign, Illinois, the home of the University
of Illinois at Urbana-Champaign. Our calculations suggest that massive testing is the
most effective strategy to combat the likely increase in local cases due to mass ingress
of a student population carrying a higher viral load than that currently present in the
community.

1 Introduction

Mathematical models of infectious disease epidemiological dynamics can be provide valu-
able assistance to public health officials and health care providers in assessing the likely
seriousness of an epidemic or its potential to grow into a pandemic, and later in allocating
resources to counter the spread of the disease [105]. Simulations that trace either prior or
projected time courses make use of various mathematical and computational techniques,
including (non-exhaustively) differential equation models, statistical regression and curve
fitting, network propagation dynamics, and direct representation of human actors and their
actions by means of agent-based models. The SIR model in particular along with its var-
ious adaptations [100] has remained successful, at least in part, due to its universality as
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evidenced by its empirical adequacy across multiple epidemics, and by its formal robustness
when connecting microscale host-pathogen related events and macroscale disease observables
[28, 10].

Stochastic versions of the SIR model show that adding noise to the system changes the
predicted onset of an epidemic [113], the stability of its endemic equilibrium [123], the value
of its effective reproduction number [57] or its duration [72] when contrasted against the
deterministic one. This is significant not only at the theoretical level when studying the
stability and asymptotic representativeness of deterministic vs stochastic SIR models under
various noise regimes, but at the policy making level where computational epidemiology may
form the basis of informed decisions under policy, budgetary and other types of constraints
[46].

Moreover, the SIR has been extended spatially to account for the diffusion-like properties
associated with geographic patterns observed during epidemics. While the qualitative (and
some quantitative) properties of the traditional and the spatial SIR models remain largely
shared, spatial versions appear to be numerically susceptible to how these capture spatial
interactions [101]. As with any other diffusion process in some space, we are usually interested
on the ability of a disease to cover larger shares of the population as time marches on.
Detailed analysis of deterministic and stochastic SIR models with spatial components [16]
indicates the existence of solutions corresponding to traveling waves that propagate the
disease among point-like processes. It has also been shown that spatial SIR models can
account for the effects of long-distance travel by replacing diffusion operators containing
local processes with appropriate integro-differential ones that capture non-local dispersal
processes [117].

Agent-based models (ABMs) constitute a family of models where sets of active entities
(i.e. agents) interact collectively by following prescribed individual rules intended to portray
the emergent dynamics of a real social system [20]. In computational epidemiology, ABMs
have been used and comparatively evaluated against SIR models of various kinds. Analysis
of the behavior of both classes of models suggests that for many purposes the two classes will
give qualitatively the same result, but that agent-based models have an advantage in ease of
accounting for heterogeneity in subpopulations where that is significant [5, 96]. Furthermore,
the SIR differential equations model is derivable from asymptotic limit of an SIR ABM model
through diffusion approximation [17].

A notable coordinated effort to develop agent-based models of a flu pandemic was the
Models of Infectious Disease Agents study funded by the National Institutes of Health [51].
More recently the attention of the world was dramatically drawn to the need for public
health interventions in the case of COVID-19 by a simulation model projecting 2.2 million
deaths from COVID-19 in the United States, and 510,000 in the U.K., in the absence of such
interventions [41]. Since then, models continue to be refined as more data are analyzed [3].
It is important to note that there are enormous local geographic variations in the incidence
of, and deaths from, COVID-19 [23]. These local variations imply a need for local models, to
enable local authorities to construct appropriate strategies of social distancing and testing
for mitigation of the effects of COVID-19. The work described in this paper is designed to
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meet this need.

2 COVID-19 poses a wicked policy problem

Wicked policy problems are characterized by 1) complexity of elements to be accounted
for and their relationship to each other, 2) uncertainty in relationship to the description of the
problem and the consequences of actions, and 3) divergence within the affected community
of values and interests [55]. By all three measures of wickedness –complexity, uncertainty,
and divergence- COVID-19 is a highly wicked problem and will continue to be at least until
there is an effective and universally available vaccine.

Dimensions of complexity in COVID-19 emerge from all of the multiple ways in which
people interact with each other in such a way as to breathe the same air, and from the conse-
quent trade-offs. These trade-offs involve public health, economics, every aspect of commu-
nity life, and levels of emotional stress in individuals—a multi-level hierarchy of perspectives
involving psychology, sociology, economics, health care, and politics. Correspondingly, we
expect COVID-19 modeling efforts to include a growing number of these concerns while
remaining actionable and scientifically useful. We expect the complexity of such models
to grow, but to do so in a manner that remains intellectually transparent [38] about what
is stated in them. To this extent, models become critical components within the top-level
decision support system necessary to regain situational control during the current pandemic.

Dimensions of uncertainty abound. As noted above, there is enormous geographic varia-
tion in the documented impact of the disease, and variation even in the apparent fundamental
parameters of the virus –transmissibility, latency, and virulence- for reasons that are not yet
understood. Contributors to the uncertainty may be genetic variation in human populations
[26], genetic variation in the virus as it continues to evolve [107], variation in childhood
vaccine regimens from one nation to another [82], variations in weather patterns [61], and
variations in testing rates and disease reporting accuracy and criteria [60]. Also, there is an
element of pure chance –whether or not a particular community was “seeded” with infectious
individuals, and how many.

Dimensions of divergence are in some ways clear, and in some ways complicated. The
clearest divergence is between the imperative to save lives by social distancing and the costs
of social distancing to the community—both economic costs [15, 110] and also costs that are
less tangible due to how wealth moves across the global economy [79]. Early on in this crisis
most of the world appears to have made the choice of that we would throw our economies
into Depression [12] and restrict many community activities we value [40, 97] in order to save
the lives of the probably less than 1% of the population who would die from infection should
no social distancing constraints be imposed. At the time of writing, this choice is constantly
being reconsidered, or at least recalibrated [50]. More, and more open discussions are being
held on increasing economic activity even at the acknowledged cost of more infections and
even deaths. One is reminded of a famous comedy routine when comedian Jack Benny,
whose comic persona was as a notorious cheapskate, is held at gunpoint by a robber who
demands “Your money or your life!” This is followed by a long silence, a repeated demand,
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and a response by Benny, “I’m thinking!”. It seems that COVID-19 has the whole world
thinking about the trade-offs between economics –and other aspects of community life- and
lives. With respect to divergence, COVID-19 seems as wicked as possible. The economic
dimensions of community life can be measured in dollars. The many other dimensions have
no common units of measurement, so their relative value is literally incalculable. And yet
we are forced to decide about what to value.

Another way to look at a wicked policy problem is a one where the space of potential
solution alternatives contains far more social dilemmas than solutions. We may thus define
a social dilemma is a situation where multiple agents have (explicit or implicit) stakes in
the resolution of a problem, stakes are tied to multiple value systems (and not just shared,
“objective” technical considerations for example), and a proposed solution contains value
contradictions that get translated to unacceptable potential losses were that solution to
materialize; at the same time, the social dilemma also provides consequences if a solution fails
to appear .Conversely, a perfect solution to a wicked problem is a point of total satisfaction of
constraints at all levels of representation of the problem. This is, of course, an idealization; in
practice some constraints must be eliminated, relaxed or ignored to find a collective solution.
In summary, a social problem is wicked if the density of true solutions is low in the space of
all solution alternatives and the search for them can be described as unstructured or even
counter-incentivized at best.

Thus, the final element of COVID-19 as a truly wicked problem is that, although it is
insoluble, we must make our best effort to solve it. The consequences of not trying to solve
this intractable problem, of simply guessing at answers guided only by intuition, are far
worse than the consequences of being guided by imperfect models.

3 Building a multi-objective model for COVID-19: the

agent-based route

Based on the discussion above, our current research efforts have focused on the develop-
ment of an integrated simulation model capable of a) accurately reflecting known dynamics of
the current pandemic and the qualitative results of other models, b) simulating data-driven
stochastic heterogeneity across agent populations to more realistically reflect the variabil-
ity of underlying human populations when the model is applied, c) integrating economic
considerations in association with observable features of the pandemic, d) allowing detailed
simulation of known public policy measures at different times, intensities and dates, and e)
providing a simple interface for non-expert users to configure and interpret.

In relation to the latter point (e), we envision assisting the decision-making process in
two steps: first by providing some metaphor or visual proxy for users to construct intuitions
by running specific scenarios, and then by translating some of these intuitions into fully-
fledged computing and analysis tasks. Succinctly, we wish to facilitate decision making
processes that are both robust and adaptive [66] while helping decision makers to avoid falling
into the ”illusion of control”, or the false belief in the causal relation between computing
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consequences with a model and immediately improving their decision-making abilities [63].
At the same time, we remain painfully aware of the intrinsic difficulties posed by imperfect
data, imperfect implementation of public policy measures, and uncertain timelines for when
and for how long to apply measures under unknown timelines for availability of vaccines [104].
Ee expect our model to be beneficial when a) decision makers are fully aware of the underlying
simplifications we have made, b) model outcomes are contrasted and adjusted with incoming
data during an unfolding situation, c) experts assisting decision makers carefully determine
and document how data produced by these simulations is analyzed and translated into
tentative recommendations [70].

To this extent, we have focused our efforts on providing modeling tools for population
centers with 100,000 inhabitants or less. Our choice is motivated by the geographic distribu-
tion of cities and towns across the US [45] and by the apparent inverse correlation between
population size and rurality. This is significant since the push for urbanization seems to have
driven rural cities and towns to more precarious health systems than their urban counterparts
[95]: one can expect COVID-19 propagation to be slower due to lower population densities,
but the impact to be at least similar or stronger due to age distribution and availability of
health care facilities [8], with a special emphasis on availability of ICUs [58].

3.1 Generalities

In our model, agents interact and traverse a discrete 2D torus composed of connected
lattice points that represent geographic locations. Agent actions and decisions are governed
by random variables with suitable distributions. A single execution (i.e. a scenario run)
of a parametrization of the model corresponds to a possible world, while a simulation (i.e.
a scenario) comprises an ensemble of multiple executions with the same parametrizations
where outcomes correspond to distributions of agent states and observable quantities must
be computed through averages.

The choice of geometry presupposes that agents move across a common landscape at all
times, and no agents enter or leave it. This simplification of the geographical landscape, while
in general unrealistic, is not uncommon [93, 9] and provides two advantages: a) it naturally
matches intuitions behind interactive particle systems driven by mass action principles [75]
such as in the SIR model and b) when translated into code, no boundary checks need to be
performed by the agents. Lattice sites are connected, from the perspective of an agent, by a
Moore neighborhood in an effort to reduce the effect of discretization artifacts [64]. We note
here that our model presupposes a homogeneous population density as a means of ensure
representativeness of processes within the geographical domain. Although accounting for
variable population density areas in the same scenario is possible, our approach simplifies
implementation aspects and prevents artifacts for model outcomes that may be strongly
density dependent [121] in both epidemiological and economic aspects.

Our model does not explicitly contain a rich representation of locations where agents
are drawn to and act as temporal sinks. Instead, we chose to model agent tropism through
randomized agent dwell times. Dwell time (τdw) refers here to the minimum amount of time
an agent susceptible to COVID-19 contagion needs to spend in a given location to acquire the
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virus. Based on existing estimates [36], we have chosen τdw = 15 minutes, which corresponds
to one time step ts, s ≥ 0. Average total dwell time tdw = kdw · τdw for an agent corresponds
to the (integer) average number of steps an agent will dwell on a single location. Since our
model assumes a day as a usual reporting unit in decision-making activities, all parameters
stated in days are internally rescaled to τdw units (i.e. 1 day = 96 simulation steps). Agent
dwell times are set at creation time using a random deviate from Poisson(k;λ = kdw).

3.2 Core parameterization

To configure of a scenario, a collection of demographic and disease parameters must be
specified. Age structure appears to be strongly associated with differences in COVID-19
fatality rates [19, 32, 37, 98]. The model requires estimates both of the distribution and
observed fatality proportions psex

f and page
f per sex (i.e. male and female) and age (i.e. every

ten-year intervals) respectively. Co-morbidities are introduced in a similar manner by means
of the age and sex structure of the population as a collection of positive multipliers ksex

f , kage
f

per relevant condition, and aggregate clinical data about their prevalence per age and sex.
The total number of agents N at the onset of the simulation remains constant at all

times, except when an influx of new agents is simulated. To do so, the number of new agents
entering the population correspond to a proportion pnew of the existing ones. In addition,
one must specify when the agents will be introduced ts = Tnew and how long it takes them to
enter the space τnew. In this manner our model can account for seasonal population increases
driven by, for instance, agricultural production or the start of semesters in university towns.
After time ts′ = Tnew + τnew, the simulation will contain approximately N ′ = N + pnew · N
agents.

To account for population density ρpop, the model specifies the width W and height
H of the lattice that will contain the agents. We presuppose that agents move across the
lattice one jump at a time if their dwell time is exhausted. The size of the lattice should be
also adjusted based on the mobility and transportation patterns of individuals within the
enclosed region of interest –that is, excluding realistic density fluctuations due to commuters
that spend most of their time outside of the simulated region. The effect of such adjustment
is equal to re-scaling the population density by a mobility pre-factor kmobl. After these
calculations have been performed, the model should ensure for Tnew =∞ that

N

W ·H
≈ kmobl · ρpop. (1)

Intuitively, the effect of greater mobility is equivalent to increased population density,
or correspondingly, to traversing a smaller space. While our model does not include the
effect of road networks or vehicle use, a carefully constructed average for kmobl can provide
a sufficiently adequate approximation.

Disease-wise, the model comprises six critical parameters. First, the initial proportion
of agents piexp that are exposed to the disease. The model assumes that their introduction
occurs at the onset of the disease incubation period. Then, the incubation period τincb and the
recovery time τrecv are inputs correspond to average observed or estimated values in clinical
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patients [69]. In the simulation, each agents is initialized with individual incubation and
recovery times drawn from Poisson(k;λ = τincb) and Poisson(k;λ = τrecv) respectively. Our
reasoning behind this choice rests on the fact that a) the time at which symptoms manifest
across patients depends on a common organismal response to the pathogen dependent on
the activation of known (and yet unknown) molecular pathways [2, 103, 111], and at the
same time on the intra-population variations that are found across individuals due to their
specific genetic make-up and context. Thus, we treat symptoms onset as a homogeneous
Poisson process for simplicity even when the described coupling exists. An improvement to
our current model would entail, if the reasoning above holds, computing observables using a
general Poisson point process by assuming that the Radon-Nikodym density exists [29].

Fourth, the proportion of individuals who remain asymptomatic pasym is accounted for
and utilized when stochastically deciding the fate of exposed agents. The role of asymp-
tomatic patients remains heavily investigated [11, 85] and appears to play a crucial role in
disease mitigation for COVID-19 [18, 33, 43, 122]. From literature data, the proportion
of asymptomatic patients appears to vary greatly across countries and demographics (e.g.
[4, 6]), although the matter is far from settled. In this sense, our model is intended to
be applied by using data starting at the most local level if possible, and only moving to
larger geographical instances when data cannot be obtained by means of statistically robust
antibody testing.

Fifth, the proportion of severe cases psev is significant for the model due to its relation to
hospital capacity. The definition of severity used here is that reported in [118]; we suggest
similar guidelines on estimating the proportion severe cases should be followed. Another
proxy for severity may comprise the number of non-ICU and ICU admissions, and their ratio
[86]; in general, the need of hospitalization implies that clinical evaluation of a patient raises
enough concerns as to consider the possibility of transitioning from non-ICU stage to the
ICU stage of care [94]. To account for saturation of health care services, the model males use
of the proportion of beds proportional to population density pbeds, and we assume that only
severe cases are hospitalized. If a severe patient cannot be hospitalized due to saturation,
then its probability of fatality rises by a factor to be determined empirically; for reference,
our model presupposes a four-fold increase. At present, our model does not provide estimates
of ICU occupancy.

Finally, the model utilizes the probability of contagion Pcont per agent per interaction.
This quantity can be obtained from field data or other (more coarsed-grained) epidemiological
models at the onset from estimates of the basic reproduction number R0 by observing that

R0 = Pcont ∗ 〈nS,I〉t ∗ d (2)

where 〈nS,I〉t is the average number of contacts between susceptible (S) and infectious
(I) agents, and d is the duration of infectiousness of the disease. Recalling the SIR model
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dS

dt
= −βSI, (3)

dI

dt
= βSI − γI, (4)

dR

dt
= γI (5)

we observe that γ = d−1 and

Pcont =
β

〈nS,I〉t
. (6)

Our view of R0 is that of a preliminary estimate for initial calibration at the onset of the
period of interest. For reporting purposes, we favor the effective reproductive number R(t),
and consequently provide information about the observable for nS,I(t) such that

R(t) = 96 · Pcont · 〈nS,I(t)〉i · di, 0 ≤ i ≤ N. (7)

Since one agent represents multiple individuals in the region of interest, it becomes neces-
sary to compensate for this renormalization process. For such purpose, we provide a scaling
factor associated to the representativeness of the model kr given with a scale 1:R by

kr = logγ(R). (8)

We found empirically γ ≈ 1.58489, such that rescaling the probability of contagion to
obtain P ′cont = Pcont/kr leads to

R(t) = 96 · kr · P ′cont · 〈nS,I(t)〉i · di, 0 ≤ i ≤ N. (9)

In addition, R(t) ∝ ρpop (Eq. 1), which implies that kmob must also modulate R(t). The
final expression becomes

R(t) = 96 · kmob · kr · P ′cont · 〈nS,I(t)〉i · di, 0 ≤ i ≤ N. (10)

3.3 Agent dynamics

At the model level, observables are interrogated across the agent population, agent step
actions scheduled and the step number updated. At each step, agents move one space across
the 2D torus after exhausting their dwell time per location. All agents posses an internal state
σ that stores information relevant to the disease, its economic aspects and various control
structures. Their motion is driven by a random walk within their Moore neighborhood,
unless their state has been set to isolation. Isolation means not moving across the space
regardless of dwell times. More than one agent can inhabit one lattice site, which forms the
basis for determining when a susceptible agent becomes exposed and the infectious cycle
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starts. Prior to performing stage-dependent computations from the disease perspective,
agents compute the consequences of policy measures and adjust various elements of their
internal states relevant to epidemiological and economic actions to follow.

3.3.1 Epidemiology

Our model departs from the usual compartments of the SIR and extends it in order to
account for a more fine grained variety of significant infection stages. Agent disease states
are as follows:

Susceptible All agents (except those marked as initially exposed) start as the susceptible
population. When susceptible agents share the same lattice site, these may come in
contact with other exposed, symptomatic (i.e. due to voluntary or involuntary breaking
of quarantine with probability 1 − Pisoeff) or undetected asymptomatic agents. If at
least one agent is infectious, the agent changes its state σ to exposed as dictated by
Bernoulli(σ, Pcont). Unless quarantined due to a policy measure, susceptible agents
move freely across the lattice.

Exposed In the absence of any policy measures impacting exposed agents, these continue
to explore lattice sites until their incubation period given by Poisson(x, λ = τincb) is ex-
hausted. At that time, agents become asymptomatic as dictated by Bernoulli(σ, pasym)
or symptomatic detected, otherwise.

Asymptomatic Asymptomatic agents continue moving through the space and remain in-
fectious until the recovery period given by Poisson(x, λ = τrecv) is exhausted. At that
point, the agent enters the population of those recovered.

Symptomatic When an agent becomes symptomatic, it is immediately marked as detected
and quarantined. Regardless of stringency of testing policies, the definition of con-
firmed case depends at the minimum on being both symptomatic and a positive iden-
tification via some form of testing (i.e. RT-PCR qualitative or quantitative, serological
[91]). Symptomatic agents follow two possible trajectories. In the first one, agents con-
valesce without becoming severe until their recovery time is exhausted an recuperate.
In the second one, agents become severe as dictated by Bernoulli(σ, psev). In terms
of the impact of saturation of health care services, research is needed to determine
lethality of patients outside hospitals and other facilities. However, using existing eth-
ical guidelines that provide heuristics of fair resource allocation for beds and ventilator
equipment [39] as a proxy, we estimate that lethality increases (conservatively) by at
least a factor of 5.

Asymptomatic Detected Asymptomatic agents detected by some widespread systematic
testing strategy are immediately quarantined in place, and wait until their recovery
time is exhausted. At that point, they join the population of recovered agents.
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Severe Agents that enter the severe stage represent patients that require some form of
hospitalization, and for some of them, use of mechanical ventilators; these remain
under perfect quarantine. Lethality, computed per age and sex population structures
as pf = page

f · psex
f is used to determine whether a severe agent becomes a fatality as

given by Bernoulli(σ, pf ). Agents, on the other hand, may survive until recovery.

Recovered Agents that have recovered leave quarantine and move again freely across the
lattice. Our model does not consider the probability of re-infection, but this may need
to be included in the future [92]. At the moment of writing, this aspect of COVID-19
remains speculative and uncertain for human patients [34, 90, 115] despite encouraging
evidence obtained from experiments using rhesus macaques [14].

Deceased Agent that count as fatalities do not interact with other agents or undergo any
further epidemiological significant events until the end of the simulation.

3.3.2 Inbound infectious cases

In order to increase model realism, we consider the effect of inbound infectious cases of
two sorts: people that live within the community but have to travel and work outside of it
in a steady stream daily that maintains the overall population density stable, and people
that move seasonally within the community, potentially bringing in more cases that have a
different viral load. This last case describes, for example, the opening of university campuses
for instruction where several people relocate to adjacent towns.

For the first situation, the model includes the probability of susceptible people becoming
infected with a daily rate that determines the infectious stage depending on Bernoulli(x, ribnd).
In the second type of infectious cases, at time Tmass a proportion pmass of the current popu-
lation will enter the simulation space during a time period τmass with a probability of being
in the exposed state of Pmass.

3.4 Policy measures

COVID-19 has forced a frantic search for public policy measure combinations capable
of containing viral transmission, and ideally quelling its progression altogether [13, 42, 47,
56, 67, 71, 89, 99, 106, 115, 116, 120]. All measures reviewed and emerging across literature
roughly belong to four main classes of measures: 1) those that aim to reduce at any instant
the density of individuals at locations with potentially high concentration of people by means
of imposed self-isolation of non-essential workers and cancellation of activities involving
massive amounts of people, 2) those that reduce the likelihood of viral exposure for those
qualified as essential workers for whom close social interactions are inescapable, 3) those
intended to detect and isolate positive virus carriers through application of molecular or
serological testing and 4) those that seek to reconstruct interaction histories in which a
positive infectious patient may have had an active role in unknowingly spreading the disease.

It has become increasingly clear that these measures are essential yet hard to sustain for
long periods of time. On the one hand, various degrees of negative psychological impact have
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been recently reported [31], in particular impacts that decrease adherence to public policy
measures [59] which are expected to naturally arise after periods of prolonged confinement
under a collective crisis; World War II critics of air raid shelter policies constitute a signifi-
cant precedent [80]. On the hand, mounting concerns on lasting economic impacts [76, 83]
materialize the wickedness of the COVID-19 pandemic and the cost of measures to address
it [22], concerns that which include social protection of workers [44], the labor market [30],
patterns of work [65], gender equality [7], nation-state economics [74], and monetary policy
[21] to name a few.

Motivated by the latter, our work attempts to model the individual variability expected
when these types of measures are implemented, their various impacts in terms of disease and
economy collective observables, and the potential outcomes of combining them in various
manners. We note that societal and economic impacts of COVID-19 differ from those in other
pandemics due to the tight coupling of global events and the effect of near-instantaneous
digital communication. We are changing the pandemic while living it. While our model
does not provide mechanisms to state the associated control problem in cybernetics terms,
emerging literature (e.g. [35, 48, 87, 119]) suggests that such approach may be possible, and
even essential to provide solutions that account for the complexities involved in politically
and socially driven environments.

3.4.1 Self-isolation

Self-isolation in our model is captured by establishing a period in which a proportion
pisol of agents in mobile states (i.e. susceptible, exposed, asymptomatic) remains at a fixed
location for a well-defined period of time. Self-isolation starts at time Tisol and extends for
a period τisol, after which motion across space is restored. Agents isolate with effectiveness
Pisoeff , representing the probability that when in contact with another infective agent the
final probability of contagion becomes P ′cont = Pisoeff · Pcont.

3.4.2 Social distancing

Social distancing is modeled as a distance-dependent adjustment constant δ(`) that ad-
justs the probability of contagion Pcont depending on linear distance ` assumed between
agents within the same cell such that P ′′cont = δ(`) · P ′cont. Based on recent experiments on
the effect of air turbulence on droplet dispersion [24], we assume a decreasing sigmoid profile
after 1.5 meters. Hence,

δ(`) =

{
1.0, ` ≤ 1.5

ξ(`), ` > 1.5
(11)

with

ξ(`) = 1.0− 1.0

1.0 + e−K(`−2.0)
(12)
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where K is a constant that adjust the decrease rate of the sigmoid function. For the
purposes of the COVID-19 model, K = 10.0. The value of ` can be adjusted also to
account for the effect of other interventions that decrease contagion probability per contact
by decreasing the effective viral load, such as the use of various types of face masks [62].

3.4.3 Testing

Similar to self-isolation, testing in the simulation operates by distributing a target per-
centage of the population into a given period. Susceptible and asymptomatic agents can be
tested; in our simulation, we do not re-test those who recover. A symptomatic case is treated
immediately as tested, representing the case where a patient reaches a health provider and
a test is applied to determine the correspondence between symptoms and the disease.

Testing proceeds in the following manner. Once time Ttest is reached, symptomatic
and asymptomatic agents are selected with a probability Ptest proportional to the period
τtest. This testing process simulates massive testing policies without any statistical design or
underlying population structure.

3.4.4 Contact tracing

We simulate forms of automated contact tracing by means of a set of known prior contacts.
We assume a delay of two days for contact follow-up once an infected patient has been
discovered. Once an agent is marked as positive, all of its contacts are evaluated and classified
either as susceptible (negative), symptomatic or asymptomatic detected. Contact tracing
utilizes the same start time and period as testing.

3.5 Estimation of economic impact

Along with an epidemiological model, we have included economic factors tied to disease
stages. After some investigation around statistical theories in economics [27], we decided to
implement a simple model where value creation in terms of exchanges between money and
products or services [84] are computed in connection with the progression of the disease.
Our model is an oversimplification of economic systems, and as such, its goal is to provide a
numerical intuition about the immediate effects on the accumulation of capital by individuals
and the public sector during the period of interest. Thus, the economic model makes no
assumptions about wealth distribution, wealth inequality or other societal factors, and as
such only aims at portraying the impact of an epidemic on transactional capital gains or
losses at the private and public levels.

Regarding public value [81], we observe that the complex web of actions across individ-
uals and institutions make construction of a detailed model expensive in connection with
infectious disease dynamics. Growing literature on the subject is indicative of the latter
[25, 53, 78, 112]. To the best of our current experience, proper treatment of the current
situation would require a different class of model based on fractional operators coupling
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epidemiological [1] and econometric aspects [109, 73] capable of accounting for short- and
long-term memory macroeconomic effects [108].

3.5.1 A disease-economy input-output system

Our take on the matter can be stated through the following somewhat intuitive principles:

1. Disease stages that allow interactions should cause non-linear positive externalities in
terms of collectively amplified public value. The more frequent interaction exchanges,
the higher the materialization of public value as a function of non-linear effects of
reaching throughput efficiencies that both maximize economies of scale and translate
into deep capital accumulation and redistribution across the public sector.

2. Disease stages that forbid interactions but do not put individual lives at risk should
cause linear negative externalities associated to both increased unemployment ripple
effects and inability to reach throughput thresholds capable of amplifying value cre-
ation.

3. Disease stages that both forbid interactions and put individual lives at risk should
cause non-linear negative externalities due to increased unemployment ripple effects,
inability to reach throughput thresholds capable of amplifying value creation and the
saturation of alternatives under an increasingly severe public health crisis.

4. In addition, we estimate the cost of performing one test as part of the public cost.
The purpose of this observable is to provide an account of testing as a public measure
versus other actions for which their cost is harder to account for.

In order to materialize the above principles, our approach is inspired by that of input-
output matrices utilized to account for combined economy-ecosystem calculations [52]. The
equivalent of the matrix M in our model expresses economic outputs per disease stages.
Viewed as a matrix computation, the components of the input vector u correspond to pro-
portions of the agent population per infectious stage, while the output vector v is of the
form v = (vpriv, vpub). Depending on the disease stage, vector components are computed
aggregating the value of interactions or individually. By a suitable homotopic transforma-
tion T [88], we approximate non-linear effects of market dynamics, thus the final value of
v becomes T [v] = (v

αpriv

priv , v
αpub

pub ). The matrix components mij and both αpriv and αpub are
model inputs.

3.6 Model outcomes

Our model captures during its execution various observables every time step. All values
are aggregates and no particular agent information is stored; in the future, this can be of
value if the model is extended with network information. After a simulation has completed,
the following classes of observables are recorded in a CSV format:
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Table 1: Example of a coupled disease-economy input-ouput matrix with αpriv = αpub = 1.

Disease stage Private value Public value Computation

Susceptible 1.0 1.0 Aggregate
Exposed 1.0 10.0 Aggregate
Asymptomatic 1.0 10.0 Aggregate
Symptomatic -0.2 -3.0 Individual
Asymp. detected -0.2 -1.0 Individual
Severe -5.0 -15.0 Individual
Recovered 0.8 2.0 Individual
Deceased 0.0 -0.2 Individual

Simulation Step number, population size

Disease (fraction) Susceptible, exposed, asymptomatic, symptomatic quarantined, asymp-
tomatic quarantined, severe, recovered, diseased

Measures Self-Isolated, tested, traced

Epidemiology Effective reproductive number

Economics Cumulative private value, cumulative public value

3.7 Implementation

The Epidemiology Workbench is implemented using Python (v 3.6) using the Mesa agent-
based simulation library [77]. In batch processing mode, our model receives a JSON file with
all the parameters described above and a number indicating the number of cores to use during
the simulation. Once a sanity check is performed, the parameters are used in conjunction
with the multiprocessing batch running features provided by Mesa.

We also provide a parameterizable web-based dashboard to explore individual runs. The
objective behind this corresponds to enabling decision-making users to progressively gain
intuitions behind each parameter, and not to provide operational information. Our code is
openly accessible through GitHub1.

3.8 Calibration

Model calibration requires the best possible clinical data estimates for three critical pa-
rameters: the average incubation time, the average recovery time, and the proportion of
asymptomatic patients. For the average incubation time, hospital triaging of COVID-19

1See: https://github.com/snunezcr/COVID19-mesa
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cases can provide information leading to estimates, or values provided by trusted sources
at the most local level possible can be used. Incubation time is likely to be blurred by
multiple confusion variables captured in our model as a Poisson distribution. Despite its
stochasticity, the model supposes that large population sizes group tightly towards a mean
value. This assumption may need to be revised retrospectively later. For the proportion of
asymptomatic patients, contact tracing and structured antibody testing can provide specific
local information.

As a general calibration protocol, we suggest the following steps:

1. Adjust grid size based on fixed population density until R0 matches the best known
value for the area in the first days of the model (steps = 96) and > 30 runs. Population
density in the model loosely includes average mobility patterns, and cell sizes reflect
the distance traversed every 15 minutes. Also –but not recommended- the probability
of contagion may be used to calibrate. This may imply unknown population conditions
and should be used only to test hypotheses about individual variations that manifest
in the ability of COVID-19 to spread.

2. Execute the model to the point where the number of symptomatic agents corresponds to
one representative agent. For example, with an ABM of 1000 agents and a population of
100k individuals, the critical infected agent-to-population ratio is 1:100. Use the point
in time rounded to the nearest integer day as point of departure for policy measures.
In practice, this implies executing the model in excess of as many days as the longest
known incubation period.

3. If policy measures have been introduced, use date above as the reference point for their
introduction.

To develop scenarios, we strongly recommend starting from the most recently calibrated
model that includes policies as well as using a model without measures as a basis for coun-
terfactual arguments.

4 Case study: the cities of Urbana and Champaign

after reopening UIUC, Fall 2020

The cities of Urbana (pop. 42,214)2 and Champaign (pop. 88,909)3 comprise a population
of approximately 132,000 inhabitants. Figure 1 describes the current percent distribution
per age group. In addition, distribution per sex is 50.5% males and 49.5% females. However,
the population across both cities undergoes a seasonal decrease on mid May due to the end of
the Spring semester and an increase in early August with the start of the Fall semester in the
University of Illinois at Urbana-Champaign. From the more than 50,000 students enrolled
on campus on May4, we estimate that around 30,000 leave during summer to return for the

2US Census Bureau population estimates for 2019. See: https://bit.ly/3hj1PnC
3Idem. See: https://bit.ly/2WGcOjq
4University of Illinois News Bureau. See: https://bit.ly/39jYj9K
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fall semester. Effectively, the summer population amounts to around 100,000 inhabitants.
We used COVID-19 age- and sex-dependent mortality values as reported by CDC until June
10.

Figure 1: Combined population age structure and associated mortality in Urbana and Cham-
paign cities, 2019 estimate by US Census Bureau/CDC.

Our interest rests on simulating the effect of various measures once mobility restrictions
remain at values similar to the present one (phase 4 reopening) and combinations of testing
and automated contact tracing when an estimate of 30,000 incoming students with a higher
average viral load reach both cities, on an increase of 30% of the population present in
summer.

4.1 Calibration

COVID-19 data was obtained from the Champaign-Urbana Public Health District (CU-
PHD)5 and CDC for mortality data6. Sex-dependent mortality was established at 61.8% for
males and 38.2% for females. The first local case in the community was reported on March
8, and state-wide shelter-in-place measures were applied on March 217. Later on, mandatory
mask usage was established on May 18. By April 21, cumulative cases had reached 0.1%
of the population, and by July 8 it had increased to 1%. The local R(t) value at the peak

5See: https://bit.ly/3eOlISa
6CDC COVID-19 Death Data and Resources. See: https://bit.ly/3hpap4A
7State of Illinois. See: https://bit.ly/2WHU6I5
8Idem. See: https://bit.ly/3hsxm6D
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period between April 21 and May 17 reached an estimated value of 1.2; after these measures,
it remained around 0.91. We used a probability of contagion per interaction of 0.004 every
15 minutes if there is at least one person infected at the same location as the susceptible
one. This value, although computed from data, appears to reflect compliance with various
sanitation practices among the population. Based on the fluctuation in local data, we have
estimated an inbound probability of 0.0002 new cases due to members of the community
becoming exposed elsewhere. CU-PHD performs strict contact tracing across all cases, hence
for all simulations we assume contact tracing remains active across all simulations.

Google Mobility data were used to estimate the average effective shelter-in-place value
to a 45% of the population with 0.8% efficacy of self-isolation. The severity was similarly
estimated at 5% based on local case information. Similarly, a starting value of R(t) = 1.2
corresponded to a grid of 190× 225 cells and 1000 agents and kmob ≈ 0.4781; this last value
appears to be consistent with the regular use of public transport in the area and local observed
shelter-at-home patterns. At the start of the simulation, the agent-to-inhabitant ratio is
approximately 1:100. Hence, the calibration starts with one exposed agent. Differences
between R(t) in April and July correspond to ` = 1.89. Intuitively, this implies that the
effect of wearing a mask may roughly translate into increasing the distance 0.39 meters
beyond what WHO recommends for proper social distancing. However, this cannot and
should not be interpreted as to relax mask usage in any manner. In regard to asymptomatic
patients, we have established a conservative value of 35% based on prior studies [49]. The
following sequence of events was assumed toward the start of classes this Fall:

1. Exposure of the first representative agent on April 15 (simulation day 0)

2. First symptomatic representative agent on April 21 (simulation day 6)

3. Mask order from the State of Illinois on May 1 (simulation day 16)

4. Students start massive ingress two weeks between August 9-22 (simulation days 116-
129)

5. Community members are tested between August 23-29 (simulation days 130-136)

6. Simulation continues without testing for two weeks between August 30-September 12
(simulation days 137-153)

4.2 Simulation targets

Our goal for simulating the impact of mass ingress was to determine, based on various
measures, the viability of preserving public health under variations of measures a week after
a significant portion of the population has been tested. To determine the latter, we obtained
data for R(t), symptomatic, asymptomatic, severe and deceased fractions of the population.
In addition, we collected information about economic impact using our input-output matrix
model. A total of 6 simulations explore the following parameter settings:

17

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2020. ; https://doi.org/10.1101/2020.07.22.20159798doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20159798
http://creativecommons.org/licenses/by-nd/4.0/


1. shelter-in-place continued/removed on day 117,

2. massive testing performed to 25%, 50% and 75% of the population in the enlarged
community.

We also computed a counterfactual case corresponding to no massive testing and lifting of
shelter-at-home orders to compare against a backdrop without measures. Model calibration
results (Figure 2) correspond to the parametrization publicly available at the GitHub project
repository9.

(a) R(t).
(b) Active (i.e. symptomatic positive) fraction of
COVID-19 cases.

Figure 2: Calibration outcomes for the cities of Urbana and Champaign during the COVID-
19 pandemic. Dates span from April 21 to May 31 (40 days).

4.3 Results and Discussion

We computed a total of 7 scenarios (shelter-at-home times testing levels plus counter-
factual), each one with an ensemble of 30 independent runs. Execution of these scenarios
was performed on Amazon EC2 infrastructure using a c5a.8xlarge non-dedicated instance
with 36 processors and 64 GB RAM. We used an Ubnutu 18.04 86 image as the choice of
operating system. Calibration CPU time with an ensemble of similar size for the first 40
days is, on average, 16.3±0.4 minutes, and the average execution time of a complete scenario
is 65.2± 1.3 minutes. Preliminary profiling indicates that random number generation using
the SciPy library [114] explains most of the execution time. No attempts were made to
further speed up our code by compiling it using Cython [102] or Numba [68]. Our goal in
these simulations was not to reproduce exactly the case curves observed in the community,
but to obtain a picture that remains quantitatively and qualitatively rigorous. Confidence
intervals are calculated at 95% when present. We provide scripts to automate the setup

9See: https://bit.ly/2BhCuv3
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of the Amazon EC2 instance with model installation10, the execution of all scenarios11 and
their visualization12 for reproducibility purposes.

The following convention is applied to all figures: dark red corresponds to 25% testing,
teal to 50% and dark blue to 75%; the counterfactual case is colored in purple. A dotted line
corresponds to the start of mass ingress, a dot-dash line to the end of mass ingress and the
start of massive testing, and a dashed line to the end of massive testing. All figures related
to disease stages start at day 80.

4.3.1 Public health

Model results indicate that outbound exposed individuals coupled with local fluctuations
appear to drive the behavior of this pandemic for the cities of Urbana and Champaign. The
combination of contact tracing and public health management by CU-PHD, compliance with
health and sanitary measures and rapid implementation of shelter-in-place measures have
prevented the pandemic from escalating in the region. Considering both cities as a closed
system, adequate health management appears to be ultimately responsible for the small
number of severe cases and hospitalizations in the region. The effect of masks, based on the
information obtained from our simulation, appears to have a significant effect on the value
R(t) according to Fig. 2.

Our simulation of the reopening of the University of Illinois local campus with a higher
viral load suggests that an increase in cases should be observable independent of the testing
regime or relaxation measures. The future impact of this increase, however, is not. Figure 3
indicates that lifting all shelter-at-home restrictions and performing testing has a significant
impact regardless of the testing level, while preserving shelter-at-home measures along with
any testing level can drastically sustain R(t) slightly below pre-mask order values. We note
that R(t) decreases in all cases, which can be explained by contact tracing-based testing. This
suggests that even hybrid education modes (in presence + online) constitute significantly
better alternatives than full campus reopening.

Testing intensity matters. In terms of the outcome after day 137, testing intensity de-
termines the last value of active cases during two weeks after testing. Note that even when
the testing instant itself has passed, capturing a larger and larger number of positive cases
(particularly asymptomatic ones) drastically reduces the infectious population (Figure ??).
Even when shelter-at-home measures have been lifted, testing reduces the fraction of the pop-
ulation classified as active cases at least higher but close to its value prior to mass ingress
(25%), roughly equal its prior value (50%) or lower than the prior value (75%). Lifting
shelter-at-home measures has a significant impact on the magnitude of both the peak of
active cases and the value after two weeks have passed since testing occurred. Plans to test
the student population once per week at scale, although not simulated here, appear to be a
most effective solution to further tame the curve.

10See: https://bit.ly/30wgS6M
11See: https://bit.ly/3jvR2Zw
12See: https://bit.ly/2BkMh3v
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(a) Shelter-at-home measures removed on day
117.

(b) Shelter-at-home measures continued until day
153.

Figure 3: Evolution of R(t) as a function of testing levels and shelter-at-home measures
removal (a) and (b) preservation.

(a) Shelter-at-home measures removed on day
117.

(b) Shelter-at-home measures continued until day
153.

Figure 4: Active cases as a function of testing levels and shelter-at-home measures removal
(a) and (b) preservation.
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The main mechanism massive testing addresses in general, according to our simulations,
is the removal of infectious individuals from the population, in particular those who are
asymptomatic. In general, the estimated proportion of asymptomatic patients is a signif-
icant driver of the contagion in our model. When the population increases, many more
individual contacts are possible within the same geographical area, and the lag induced by
the incubation time translates into observing the impact of testing at least a week later.
Figure 5 compares the asymptomatic fraction of the population across a baseline simulation
without massive testing or some degree of sheltering. As in the previous case, shelter-in-
place measures have an effect on the growth rate of the asymptomatic population, but even
a testing intensity of 25% appears to lower it significantly compared to the counterfactual
case. At case severity of 5%, more hospitalizations may be expected six days after day 130
(mass ingress), particularly if shelter-at-home orders have been lifted (Figure 6). The impact
of testing, while it cannot be fully distinguished due to the overlap of confidence intervals in
our simulations

(a) Shelter-at-home measures removed on day
117.

(b) Shelter-at-home measures continued until day
153.

Figure 5: Asymptomatic cases as a function of testing levels and shelter-at-home measures
removal (a) and (b) preservation.

4.3.2 Economic impact

Our analysis of economic impact focuses on two per-capita averages: cumulative private
value (without any egress) and cumulative public value. While this part of our proposed
model is experimental and requires further analysis, we proceed to state the current results.

First, we studied the effect of the pandemic only on individual accumulation of private
value (Figure 7). Mass ingress appears to renormalize temporarily the distribution and
removing shelter-at-home measures, predictably, increases the final value at day 153, but
only by approximately five units. All testing levels appear to comprise a relatively tight
bundle, which can be interpreted either as an artifact due to the model being simplistic, or
as the fact that the impact of testing levels on cumulative private value in the context of a
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(a) Shelter-at-home measures removed on day
117.

(b) Shelter-at-home measures continued until day
153.

Figure 6: Severe cases as a function of testing levels and shelter-at-home measures removal
(a) and (b) preservation.

pandemic under control (as in Urbana and Champaign cities) is limited. Even when these
differences are small, they do exist. Testing at low levels (i.e. 25% and 50%) reduces the
number of isolated people compared to testing at a broader scale (i.e. 70%). However, when
an epidemic process remains under control, public health benefits largely appears overshadow
individual losses, contingent on the validity of this approach.

(a) Shelter-at-home measures removed on day
117.

(b) Shelter-at-home measures continued until day
153.

Figure 7: Per-capita cumulative private value as a function of testing levels and shelter-at-
home measures removal (a) and (b) preservation.

In the case of per-capita cumulative public value, the model predicts negative outcomes
even for an epidemic under control (Figure ). This appears to align with public expenditure
needed to mitigate any economic and societal lockdown necessary to stop the spread of the
disease, as well as the negative externalities leading to less public transactions taking place on
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systems that were designed to support a certain minimum load to remain profitable: public
finances tend to be, in general, inelastic for that reason. When shelter-at-home measures
are lifted, a natural order of solutions arises from worst-case (our counterfactual, purple)
to best-case (75% testing, blue): strong testing reduces the long-term impact of active,
asymptomatic and severe cases. In this situation, however, the effect of mass ingress appears
to be to re-bundle the behavior as R(t) increases again. If shelter-at-home is preserved,
an interesting situation arises: doing nothing appears to be a good economic solution. We
believe the main reason behind this result to be that, for the case modeled here, the social and
economic cost of the lockdown is higher due to the situation being under control; however,
the material gains computed by the model between are rather small, and preserving public
health over economics is a better-long term strategy. Despite this, strong massive testing
still provides a next best solution from the point of view of economics, and the best strategy
from the public health perspective; this is evidenced by the diverging curves in Fig. 8(b).
We speculate, based on our current simulation outcomes, that the ordering in the economic
cost profile of a pandemic during its exponential phase should be similar to that of Fig. 8(a),
but with the divergence observed in (b).

(a) Shelter-at-home measures removed on day
117.

(b) Shelter-at-home measures continued until day
153.

Figure 8: Per-capita cumulative public value as a function of testing levels and shelter-at-
home measures removal (a) and (b) preservation.

5 Conclusions

We reported here the construction of an agent-based workbench using the Mesa modeling
framework capable of capturing epidemic processes alongside public policy measures. The
model is fully stochastic, entailing the computation of observables of different kinds. While
computationally expensive, its formulation allows to easily obtain quantities that appear to
be useful in the process of combating an epidemic. We applied our workbench to understand-
ing the possible epidemiological profile of two cities, Urbana and Champaign, in the context
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of the reopening of the University of Illinois local campus next Fall. Our simulations indicate
that at least 50% testing of the local population is needed to sustain the pressure of mass
ingress of individuals with a higher viral load compared to the local one. More generally,
contemporary management of an epidemic demands changing the mode of interaction across
as much as the population as possible from those requiring physical proximity to those that
do not. Although digital technologies provide mechanisms to preserve safe spatial distancing,
temporal distancing can also be intelligently used to reduce the probability of contagion. In
terms of economics, public health measures must be privileged over financial concerns, since
the panorama appears similarly bleak during the early phases of an epidemic, and strict
measures possibly provide the best solution during the exponential phase.

Our model contains the following key limitations. First, only one measure per type can
be specified at the moment, instead of a sequence of dates paired with values corresponding
to the measured (or expected) effect of measures of the same type. In the example above,
we used an approximation of shelter-in-place for the entire simulation period (April 21–
September 12), even when the State of Illinois ordered phase 4 re-openings on June 26.
Another critical element missing in our model corresponds to preferential shelter-in-place
per age group. Even when mortality appears to more strongly impact the elderly, local
mortality is low. This may be due to higher compliance of that population with shelter-at-
home and other sanitary measures, including wearing masks in public. Variable viral loads
per disease stage [54] are missing in our model, but these are harder to calibrate due to the
biosafety and time elements involved in quantitative PCR-RT. Nevertheless, we do foresee
situations where this may be possible and pertinent. Finally, our model assumes agents
have an effectively infinite memory to remember whom they have had contact with. Contact
tracing has a stringent limit when performed manually, which can be expanded greatly by
means of various information technologies. Hence, our model is not realistic in this sense,
since it does not distinguish between these two cases: when an epidemic has reached certain
critical mass, active cases will be underestimated.

Computationally, the Epidemiology Workbench is limited by the lack of true concurrency
in Mesa, thereby impacting scaling properties of our simulation. Distributing the agents
across multiple compute nodes in Python requires architectural changes in Mesa beyond
the scope of our work. At present, efforts are under way to develop an Elixir-based ABM
platform capable of addressing this limitation as part of the SPEC collaboration in the
Computational Social Science community. Another critical bottleneck is random number
generation, for which various strategies may be applied, including the use of (approximately)
irrational numbers as coefficients of Fourier series.

A final aspect underscored by our research, in particular in the context of COVID-19, is
the need for anticipatory mechanisms driving public policy measures. In this sense, simu-
lation methods such as the one presented here or others lack convenience when introducing
external events and the execution cost of recomputing complex models, and appear to make
sense only at early stages of a epidemic process: once the disease spread has reached its ex-
ponential phase, the need moves from prediction to probabilistically qualified estimations of
short term measure effectiveness. This suggests a different class of stochastic methods that
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not only predict expected trends but also recommend measures based on their effectiveness,
similar to those used in high-speed trading of financial derivatives and futures. The complex-
ity of the socio-technical character of the global economy and society demands these more
powerful methods to successfully address the wicked character of a pandemic, in particular
this one.

As of now, our efforts concentrate on seeking viable ways to package and deploy the
Epidemiology Workbench across various cyberinfrastructure resources in order to make it
available to other small cities (including training resources) and, particularly, to communities
with strong presence of underrepresented minorities whose public health planning resources
are heavily constrained.
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