ABSTRACT
Although acute respiratory infections are a leading cause of mortality in sub-Saharan Africa, surveillance of diseases such as influenza is mostly neglected. Evaluating the usefulness of influenza-like illness (ILI) surveillance systems and developing approaches for forecasting future trends is important for pandemic preparedness. We applied statistical and machine learning models to forecast 2012 to 2018 trends in ILI cases reported by the Cameroon Ministry of Health (MOH), using Google searches for influenza symptoms, treatments, natural or traditional remedies as well as, infectious diseases with a high burden (i.e., AIDS, malaria, tuberculosis). The variance explained by the models based on Google search data were 87.7%, 79.1% and 52.0% for the whole country, the Littoral and Centre regions respectively. Our study demonstrates the need for developing contextualized approaches when using digital data for disease surveillance and demonstrates the potential usefulness of search data for monitoring ILI in sub-Saharan African countries.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Elaine O. Nsoesie is supported by funding from the National Institutes of Health (Award Number K01ES025438). Martial L. Ndeffo-Mbah is supported by a faculty startup funding from Texas A&M University.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Study exempt from IRB
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The Google data is publicly available.