Abstract
Background Many low- and middle-income countries have implemented control measures against coronavirus disease 2019 (COVID-19). However, it is not clear to what extent these measures explain the low numbers of recorded COVID-19 cases and deaths in Africa. One of the main aims of control measures is to reduce respiratory pathogen transmission through direct contact with others. In this study we collect contact data from residents of informal settlements around Nairobi, Kenya to assess if control measures have changed contact patterns, and estimate the impact of changes on the basic reproduction number (R0).
Methods We conducted a social contact survey with 213 residents of five informal settlements around Nairobi in early May 2020, four weeks after the Kenyan government introduced enhanced physical distancing measures and a curfew between 7pm and 5am. Respondents were asked to report all direct physical and non-physical contacts made the previous day, alongside a questionnaire asking about the social and economic impact of COVID-19 and control measures. We examined contact patterns by demographic factors, including socioeconomic status. We described the impact of COVID-19 and control measures on income and food security. We compared contact patterns during control measures to patterns from non-pandemic periods to estimate the change in R0.
Findings We estimate that control measures reduced physical and non-physical contacts, reducing the R0 from around 2.6 to between 0.5 and 0.7, depending on the pre-COVID-19 comparison matrix used. Masks were worn by at least one person in 92% of contacts. Respondents in the poorest socioeconomic quintile reported 1.5 times more contacts than those in the richest. 86% of respondents reported a total or partial loss of income due to COVID-19, and 74% reported eating less or skipping meals due to having too little money for food.
Interpretation COVID-19 control measures have had a large impact on direct contacts and therefore transmission, but have also caused considerable economic and food insecurity. Reductions in R0 are consistent with the linear epidemic growth in Kenya and other sub-Saharan African countries that implemented similar, early control measures. However, negative and inequitable impacts on economic and food security may mean control measures are not sustainable in the longer term.
Evidence before this study We conducted a PubMed search on 6 June 2020 with no language restrictions for studies published since inception, using the search terms (“social mix*” OR “social cont*” OR “contact pattern*) AND (“covid*”). The search yielded 53 articles, two of which reported changes in social contacts after COVID-19 control measures. The first study reported changes in contact patterns in Wuhan and Shanghai, and the second changes in contact patterns in the UK. We found no studies examining changes in contact patterns due to control measures in sub-Saharan Africa, and no studies disaggregating contacts by socioeconomic status.
Added value of this study This is the first study to estimate the reproduction number of COVID-19 under control measures in sub-Saharan Africa using primary contact data. This study also moves beyond existing work to i) measure contacts in densely populated informal settlements, ii) explore how social contacts vary across socioeconomic status, and iii) assess the impact of control measures on economic and food security in these areas.
Implications of all the evidence COVID-19 control measures have substantially reduced social contacts and disease transmission. People of lower socioeconomic status face greater transmission risk as they report more contacts. Control measures have led to considerable economic and food insecurity, and may not be sustainable in the long term without efforts to reduce the burden of control measures on households.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The following funding sources are acknowledged as providing funding for the named authors. This research was partly funded by the Bill & Melinda Gates Foundation (INV-003174: KP). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: KvZ). Elrha R2HC/UK DFID/Wellcome Trust/This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (KvZ). ERC Starting Grant (#757699: MQ). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: KP, WJE). This research was partly funded by the Global Challenges Research Fund (GCRF) project 'RECAP' managed through RCUK and ESRC (ES/P010873/1: AG, CIJ). The following funding sources are acknowledged as providing funding for the working group authors. Alan Turing Institute (AE). BBSRC LIDP (BB/M009513/1: DS). This research was partly funded by the Bill & Melinda Gates Foundation (INV-003174: MJ, YL; NTD Modelling Consortium OPP1184344: CABP, GM; OPP1180644: SRP; OPP1183986: ESN; OPP1191821: KO'R, MA). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP). ERC Starting Grant (#757688: CJVA, KEA; #757699: JCE, RMGJH). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: MJ, PK, YL). This research was partly funded by the Global Challenges Research Fund (GCRF) project 'RECAP' managed through RCUK and ESRC (ES/P010873/1: TJ). HDR UK (MR/S003975/1: RME). Nakajima Foundation (AE). This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (16/137/109: BJQ, CD, FYS, MJ, YL; Health Protection Research Unit for Modelling Methodology HPRU-2012-10096: NGD, TJ; PR-OD-1017-20002: AR). Royal Society (Dorothy Hodgkin Fellowship: RL; RP\EA\180004: PK). UK DHSC/UK Aid/NIHR (ITCRZ 03010: HPG). UK MRC (LID DTP MR/N013638/1: EMR, GRGL, QJL; MC_PC 19065: RME; MR/P014658/1: GMK). Authors of this research receive funding from UK Public Health Rapid Support Team funded by the United Kingdom Department of Health and Social Care (TJ). Wellcome Trust (206250/Z/17/Z: AJK, TWR; 206471/Z/17/Z: OJB; 208812/Z/17/Z: SC, SFlasche; 210758/Z/18/Z: JDM, JH, NIB, SA, SFunk, SRM). No funding (AKD, AMF, DCT, SH).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Participation in the study was voluntary and analyses conducted on anonymised data. The study was approved by the internal review board of the Population Council (study number 936), the ethics committee of the London School of Hygiene and Tropical Medicine (reference number 22294), and the AMREF Health Africa Ethics and Scientific Review Committee in Kenya (P803/2020).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
CMMID COVID-19 Working Group The following authors were part of the Centre for Mathematical Modelling of Infectious Disease COVID-19 working group. Each contributed in processing, cleaning and interpretation of data, interpreted findings, contributed to the manuscript, and approved the work for publication: Nikos I Bosse, Graham Medley, Kathleen O’Reilly, Quentin J Leclerc, Mark Jit, Rachel Lowe, Nicholas G. Davies, Arminder K Deol, Gwenan M Knight, Megan Auzenbergs, W John Edmunds, Katherine E. Atkins, Thibaut Jombart, Rosalind M Eggo, Anna M Foss, Stefan Flasche, Carl A B Pearson, Emily S Nightingale, James D Munday, Sam Abbott, Billy J Quilty, Hamish P Gibbs, David Simons, Jon C Emery, Stéphane Hué, Yang Liu, Damien C Tully, Alicia Rosello, Simon R Procter, Akira Endo, Timothy W Russell, Eleanor M Rees, Charlie Diamond, Sophie R Meakin, Adam J Kucharski, Georgia R Gore-Langton, Petra Klepac, Joel Hellewell, Fiona Yueqian Sun, Rein M G J Houben, C Julian Villabona-Arenas, Sebastian Funk, Samuel Clifford, Oliver Brady.
Funding The following funding sources are acknowledged as providing funding for the named authors. This research was partly funded by the Bill & Melinda Gates Foundation (INV-003174: KP; & INV-001754: MQ). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: KvZ). This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (KvZ). ERC Starting Grant (757699: MQ). This project has received funding from the European Union’s Horizon 2020 research and innovation programme – project EpiPose (101003688: KP, WJE). This research was partly funded by the Global Challenges Research Fund (GCRF) project ‘RECAP’ managed through RCUK and ESRC (ES/P010873/1: AG, CIJ).
The following funding sources are acknowledged as providing funding for the working group authors. Alan Turing Institute (AE). BBSRC LIDP (BB/M009513/1: DS). This research was partly funded by the Bill & Melinda Gates Foundation (INV-003174: MJ, YL; NTD Modelling Consortium OPP1184344: CABP, GM; OPP1180644: SRP; OPP1183986: ESN; OPP1191821: KO’R, MA; INV-001754: MQ). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP). ERC Starting Grant (#757688: CJVA, KEA; #757699: JCE, RMGJH). This project has received funding from the European Union’s Horizon 2020 research and innovation programme – project EpiPose (101003688: MJ, PK, YL). This research was partly funded by the Global Challenges Research Fund (GCRF) project ‘RECAP’ managed through RCUK and ESRC (ES/P010873/1: TJ). HDR UK (MR/S003975/1: RME). Nakajima Foundation (AE). This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (16/137/109: BJQ, CD, FYS, MJ, YL; Health Protection Research Unit for Modelling Methodology HPRU-2012–10096: NGD, TJ; PR-OD-1017–20002: AR). Royal Society (Dorothy Hodgkin Fellowship: RL; RP\EA\180004: PK). UK DHSC/UK Aid/NIHR (ITCRZ 03010: HPG). UK MRC (LID DTP MR/N013638/1: EMR, GRGL, QJL; MC_PC 19065: RME; MR/P014658/1: GMK). Authors of this research receive funding from UK Public Health Rapid Support Team funded by the United Kingdom Department of Health and Social Care (TJ). Wellcome Trust (206250/Z/17/Z: AJK, TWR; 206471/Z/17/Z: OJB; 208812/Z/17/Z: SC, SFlasche; 210758/Z/18/Z: JDM, JH, NIB, SA, SFunk, SRM). No funding (AKD, AMF, DCT, SH).
Data availability Data and code are fully available at https://github.com/mquaife/kenya_mixing
Conflict of interest All authors declare no conflict of interest.
Role of funding source No funding source had input to the design or conduct of analyses, or drafting or approval of manuscript.
Ethics committee approval The study was approved by the internal review board of the Population Council (study number 936), the ethics committee of the London School of Hygiene and Tropical Medicine (reference number 22294), and the AMREF Health Africa Ethics and Scientific Review Committee in Kenya (P803/2020).
Data Availability
Data and code fully available at https://github.com/mquaife/kenya_mixing