Abstract
Pseuodotyped particles have significant importance and use in virology as tools for studying the biology of highly pathogenic viruses in a lower biosafety environment. The biological, chemical, and serological studies of the recently emerged SARS-CoV-2 will be greatly aided by the development and optimization of a suitable pseudotyping system. Here, we pseudotyped the SARS-CoV-2 Spike glycoprotein (SPG) on a retroviral (MMLV) as well as a third generation lentiviral (pLV) vector and tested the transduction efficiency in several mammalian cell lines expressing SARS-CoV-2 receptor hACE2. While MMLV pseudotyped the vesicular stomatitis virus G glycoprotein (VSV-G) efficiently, it could not pseudotype SPG. In contrast, pLV pseudotyped both glycoproteins efficiently; however, much higher titers of pLV-G particles were produced. Among all the tested mammalian cells, 293Ts expressing hACE2 were most efficiently transduced using the pLV-S system. The pLV-S particles were efficiently neutralized by diluted serum (>:640) from a recently recovered COVID-19 patient who showed high SARS-CoV-2 specific IgM and IgG levels. In summary, pLV-S pseudotyped virus provides a valid screening tool for the presence of anti SARS-CoV-2 specific neutralizing antibodies in convalescent patient serum.
Significance Statement SARS-CoV-2 has emerged as one of the biggest threats in the history of humankind and is comparable to medieval plague, 1918 Spanish Flu, as well as world wars. Investigations into the biology of SARS-CoV-2 are partially hindered by the highly transmissible and pathogenic nature of this virus, which requires biosafety level 3 containment in a laboratory for investigation. The study here describes a pseudotyping system which mimics the surface properties of SARS-CoV-2 and can be used in lower biosafety level laboratory for the purpose of vaccine studies, drug inhibition studies, and serological screening to determine the status of herd immunity.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
Not a clinical trial
Funding Statement
Funding for this work was provided by University of Mississippi Medical Center COVID-19 funds.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Samples were obtained either from discarded clinical samples or from individual recruited to participate in this study. Written informed consent was obtained from the individuals recruited for this study. The study was reviewed and approved by the Institutional Review Board of the University of Mississippi Medical Center which follows the national and international guidelines consistent with the principles established by the Declaration of Helsinki.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Non identifiable data is included in the manuscript.