Automated Neuroprognostication via Machine Learning in Neonates with Hypoxic-Ischemic Encephalopathy
View ORCID ProfileJohn D. Lewis, View ORCID ProfileAtiyeh A. Miran, View ORCID ProfileMichelle Stoopler, Helen M. Branson, Ashley Danguecan, View ORCID ProfileKrishna Raghu, View ORCID ProfileLinh G. Ly, View ORCID ProfileMehmet N. Cizmeci, View ORCID ProfileBrian T. Kalish
doi: https://doi.org/10.1101/2024.05.07.24306996
John D. Lewis
1Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
Atiyeh A. Miran
2Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
Michelle Stoopler
3Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
Helen M. Branson
4Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
Ashley Danguecan
2Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
5Department of Psychology, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
Krishna Raghu
2Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
Linh G. Ly
2Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
Mehmet N. Cizmeci
2Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
Brian T. Kalish
1Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
2Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
6Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
Data Availability
Our multi-contrast population specific neonatal brain MRI template and the labels for the deep gray-matter structures can be found here: https://gin.g-node.org/johndlewis/HIE/Template/ ; the scripts used to process the data can be found here: https://gin.g-node.org/johndlewis/HIE/Tools ; and the linear regression model can be found here: https://gin.g-node.org/johndlewis/HIE/Models/.
https://gin.g-node.org/johndlewis/HIE/Template/
Posted May 08, 2024.
Automated Neuroprognostication via Machine Learning in Neonates with Hypoxic-Ischemic Encephalopathy
John D. Lewis, Atiyeh A. Miran, Michelle Stoopler, Helen M. Branson, Ashley Danguecan, Krishna Raghu, Linh G. Ly, Mehmet N. Cizmeci, Brian T. Kalish
medRxiv 2024.05.07.24306996; doi: https://doi.org/10.1101/2024.05.07.24306996
Automated Neuroprognostication via Machine Learning in Neonates with Hypoxic-Ischemic Encephalopathy
John D. Lewis, Atiyeh A. Miran, Michelle Stoopler, Helen M. Branson, Ashley Danguecan, Krishna Raghu, Linh G. Ly, Mehmet N. Cizmeci, Brian T. Kalish
medRxiv 2024.05.07.24306996; doi: https://doi.org/10.1101/2024.05.07.24306996
Subject Area
Subject Areas
- Addiction Medicine (382)
- Allergy and Immunology (699)
- Anesthesia (190)
- Cardiovascular Medicine (2838)
- Dermatology (243)
- Emergency Medicine (427)
- Epidemiology (12545)
- Forensic Medicine (10)
- Gastroenterology (801)
- Genetic and Genomic Medicine (4419)
- Geriatric Medicine (401)
- Health Economics (713)
- Health Informatics (2845)
- Health Policy (1046)
- Hematology (373)
- HIV/AIDS (893)
- Medical Education (413)
- Medical Ethics (114)
- Nephrology (461)
- Neurology (4173)
- Nursing (221)
- Nutrition (615)
- Oncology (2199)
- Ophthalmology (623)
- Orthopedics (254)
- Otolaryngology (317)
- Pain Medicine (266)
- Palliative Medicine (81)
- Pathology (485)
- Pediatrics (1171)
- Primary Care Research (482)
- Public and Global Health (6768)
- Radiology and Imaging (1487)
- Respiratory Medicine (898)
- Rheumatology (430)
- Sports Medicine (368)
- Surgery (473)
- Toxicology (57)
- Transplantation (200)
- Urology (173)