Abstract
Background Human visceral leishmaniasis (VL) vaccines are currently under development and there is a need to understand their potential impact on population wide VL incidence.
Methodology / Principal Findings We implement four characteristics from different human VL vaccine candidates into two published VL transmission model variants to estimate the potential impact of these vaccine characteristics on population-wide anthroponotic VL incidence on the Indian subcontinent (ISC). The vaccines that are simulated in this study 1) reduce the infectiousness of infected individuals towards sand flies, 2) reduce risk of developing symptoms after infection, 3) reduce the risk of developing post-kala-azar dermal leishmaniasis (PKDL), or 4) lead to the development of transient immunity. We also compare and combine a vaccine strategy with current interventions to identify their potential role in elimination of VL as public health problem. We show that the first two simulated vaccine characteristics can greatly reduce VL incidence. For these vaccines, an approximate 60% vaccine efficacy would lead to achieving the ISC elimination target (<1 VL case per 10,000 population per year) within 10 years’ time in a moderately endemic setting when vaccinating 100% of the population. Vaccinating VL cases to prevent the development of PKDL is a promising tool to sustain the low incidence elimination target after regular interventions are halted. Vaccines triggering the development of transient immunity protecting against infection lead to the biggest reduction in VL incidence, but booster doses are required to achieve perduring impact.
Conclusions / Significance Even though vaccines are not yet available for implementation, their development should be pursued as their potential impact on transmission can be substantial, both in decreasing incidence at the population level as well as in sustaining the ISC elimination target when other interventions are halted.
Author summary Vaccines for human visceral leishmaniasis (VL) are currently under development. In this study, we simulate VL transmission dynamics using mathematical models to explore the potential impact of vaccines on population-wide incidence. We show that some vaccines have high potential to reduce VL incidence, namely those that reduce the infectiousness of infected individuals to sand flies and those that reduce the chance of developing symptoms once infected. The effect of vaccines that lead to protection from infection is potentially the greatest, but depending on the duration of immunity, individuals would require booster doses to guarantee lifelong impact. Vaccines that prevent the development of post-kala-azar dermal leishmaniasis are a promising tool to sustain low VL incidence and prevent recrudescence of infection when regular interventions are halted. Our results strongly support the continued development of VL vaccines, as their potential impact on population incidence can be substantial.
Competing Interest Statement
SM / MMGH received funding from the University of York to support the definition of a clinical development strategy and related business case for the vaccine candidate ChAd63-KH. PMK is funded by the Wellcome Trust (WT108518) and EDCTP (RIA2016V-1640) to develop a vaccine against leishmaniasis and is co-inventor of a patent covering a synthetic vaccine gene sequence (PCT/GB2010/000815).
Funding Statement
EALR, LEC, and SJDV gratefully acknowledge funding of the NTD Modelling Consortium by the Bill and Melinda Gates Foundation (OPP1184344). LEC further acknowledges funding from the Dutch Research Council (NWO, grant 016.Veni.178.023). PMK and SM are supported by The Welcome Trust (grant numbers WT108518 and WT1063203). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All relevant data are presented in the manuscript.