Abstract
Resecting cortical tissue generating high-frequency oscillations (HFOs) has been investigated as a more efficacious alternative to resecting the clinically defined seizure onset zone (SOZ). In this study, we asked if seizure freedom would be achieved using virtual resections of fast ripple (FR) networks. We compared these virtual resections to the individual patient’s actual resection and clinical outcome. We conclude that the SOZ is the minimum territory of cortex that must be resected to achieve seizure freedom. By utilizing support vector machines (SVMs) with an accuracy of 0.78 for labeling seizure freedom using factors from FR networks we could predict whether resection of the SOZ corresponded with a seizure free outcome. Furthermore, this approach could identify regions that generate FR autonomously and at high rates outside the SOZ. In the patients who experienced seizures after resection of the SOZ, virtual resections that included the SOZ and other FR generating regions rendered the patient virtually seizure free. We examined responsive neurostimulator system (RNS) patients and virtually targeted the RNS stimulation contacts proximal to sites generating FR. We used the simulations to investigate if the likelihood of a RNS super responder (>90% seizure reduction) outcome would be increased.
Competing Interest Statement
S.A.W. has nothing to disclose, I.F. has nothing to disclose, C.W. Medtronic Inc. (advisory board), Micro Systems Engineering Inc. (advisory board), Neuropace Inc. (consultant), Nevro Corp. (consultant). J.E. has nothing to disclose. R.S. has nothing to disclose. M.R.S has received compensation for speaking at continuing medical education (CME) programs from Medscape, Projects for Knowledge, International Medical Press, and Eisai. He has consulted for Medtronic, Neurelis, and Johnson & Johnson. He has received research support from Eisai, Medtronic, Neurelis, SK Life Science, Takeda, Xenon, Cerevel, UCB Pharma, Janssen, and Engage Pharmaceuticals. He has received royalties from Oxford University Press and Cambridge University Press.
Funding Statement
This work was fully supported by the National Institute of Health K23 NS094633, a Junior Investigator Award from the American Epilepsy Society (S.A.W.), R01 NS106957(R.J.S.) and R01 NS033310 (J.E.).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
University of California Los Angeles Institutional Review Board Thomas Jefferson University Institutional Review Board
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.