Abstract
Background Clinical research focused on the burden and impact of Clostridioides difficile infection (CDI) often relies upon accurate identification of cases using existing health record data. Use of diagnosis codes alone can lead to misclassification of cases. Our goal was to develop and validate a multi-component algorithm to identify hospital-associated CDI (HA-CDI) cases using electronic health record (EHR) data.
Methods We performed a validation study using a random sample of adult inpatients at a large academic hospital setting in Portland, Oregon from January 2018 to March 2020. We excluded patients with CDI on admission and those with short lengths of stay (< 4 days). We tested a multi-component algorithm to identify HA-CDI; case patients were required to have received an inpatient course of metronidazole, oral vancomycin, or fidaxomicin and have at least one of the following: a positive C. difficile laboratory test or the International Classification of Diseases, Tenth Revision (ICD-10) code for non-recurrent CDI. For a random sample of 80 algorithm-identified HA-CDI cases and 80 non-cases, we performed manual EHR review to identify gold standard of HA-CDI diagnosis. We then calculated overall percent accuracy, sensitivity, specificity, and positive and negative predictive value for the algorithm overall and for the individual components.
Results Our case definition algorithm identified HA-CDI cases with 94% accuracy (95% Confidence Interval (CI): 88% to 97%). We achieved 100% sensitivity (94% to 100%), 89% specificity (81% to 95%), 88% positive predictive value (78% to 94%), and 100% negative predictive value (95% to 100%). Requiring a positive C. difficile test as our gold standard further improved diagnostic performance (97% accuracy [93% to 99%], 93% PPV [85% to 98%]).
Conclusions Our algorithm accurately detected true HA-CDI cases from EHR data in our patient population. A multi-component algorithm performs better than any isolated component. Requiring a positive laboratory test for C. difficile strengthens diagnostic performance even further. Accurate detection could have important implications for CDI tracking and research.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This project received support from NIH grant UL1TR002369 and RL5GM118963
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Institutional Review Board of Oregon Health & Science University gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors and completion of a data use agreement.