Abstract
Introduction Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways.
Material and methods We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort.
Results In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected.
Conclusion Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work is supported by Estonian Research Council grants PRG471 and PRG1291. The Broad Institute Center for Mendelian Genomics (UM1HG008900) is funded by the National Human Genome Research Institute with supplemental funding provided by the National Heart, Lung, and Blood Institute under the Trans-Omics for Precision Medicine (TOPMed) program and the National Eye Institute. MHW is supported by K23HD102589. SP is supported by Estonian Research Council grant PSG774. DF and HP are supported by Estonian Research Council grants (PRG1095, PSG59, ERA-NET TRANSCAN-2 (BioEndoCar), Estonian Life Science Infrastructure for Biological Information (TT11)); Project No 2014-2020.4.01.16-0271, ELIXIR and the European Regional Development Fund through EXCITE Center of Excellence.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Research Ethics Committee of the University of Tartu and The Estonian Committee on Bioethics and Human Research gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
↵# shared authorship
Data Availability
All analyzed data consists of patient's personal data and is stored according to regulations of the institutions. Pseudonymized data is available on request.