Abstract
The Omicron era of the COVID-19 pandemic commenced at the beginning of 2022 and whilst it started with primarily BA.1, it was latter dominated by BA.2 and related sub-lineages. Over the course of 2022, we monitored the potency and breadth of antibody neutralization responses to many emerging variants at two levels: (i) we tracked over 400,000 U.S. plasma donors over time through various vaccine booster roll outs and Omicron waves using sequentially collected IgG pools; (ii) we mapped the antibody response in individuals using blood from strigently curated vaccine and convalescent cohorts. In pooled IgG samples, we observed the maturation of neutralization breadth to Omicron variants over time through continuing vaccine and infection waves. Importantly, in many cases we observed increased antibody breadth to variants that were yet to be in circulation. Determination of viral neutralization at the cohort level supported equivalent coverage across prior and emerging variants with emerging isolates BQ.1.1, XBB.1, BR.2.1 and XBF the most evasive. Further, these emerging variants were resistant to Evusheld, whilst neutralization resistance to Sotrovimab was restricted to BQ.1.1 and XBF. We conclude at this current point in time that dominant variants derived from BQ and BA.2.75 lineages can evade antibodies at levels equivalent to their most evasive lineage counterparts but sustain an entry phenotype that continues to promote an additional outgrowth advantage. In Australia, BR2.1 and XBF share this phenotype and are dominating across NSW and Victoria.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT) and the NSW Vaccine Infection and immunology Collaborative (VIIM).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All human serum samples were obtained with written informed consent from the participants and have been approved under Ethics review at St Vincents Hospital, Darlinghurst Sydney Australia (ADAPT Cohort) and Ethics review at the Western Sydney Local Health (WSLHD) District (VIIM cohort)(2020/ETH00964; 2020/ETH02068; 2019/ETH03336; 2021/ETH00180; 2021/ETH0042). All primary isolates used herein were obtained from de-identified remnant diagnostic swabs that had completed all diagnostic testing under approval by the New South Wales Chief Health Officer following independent scientific review and as outlined in the ADAPT ethics protocol 2020/ETH00964.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Funding This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), Medical Research Future Fund Antiviral Development Call grant (WDR), the New South Wales Health COVID-19 Research Grants Round 2 (SGT) and the NSW Vaccine Infection and Immunology Collaborative (VIIM).
Variants XBF and XBC.1 are now included in figures 3 to 5.
Data Availability
Source data for generating the figures are available in the online version of the paper in the supplmentary tables. Any other data are available on request