ABSTRACT
Background Limited data exist regarding longer-term antibody responses following three-dose COVID-19 vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people living with HIV (PLWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-(WT), Omicron BA.1- and Omicron BA.5-specific responses up to six months post-third dose in 64 PLWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time.
Design Longitudinal observational cohort.
Methods We quantified WT- and Omicron-specific Anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at one, three and six months post-third vaccine dose.
Results Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than WT-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PLWH and controls post-third dose (median WT- and BA.1-specific half-lives were between 66-74 days for both groups). Antibody function also declined significantly yet comparably between groups: six months post-third dose, BA.1-specific neutralization was undetectable in >80% of COVID-19 naive PLWH and >90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PLWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough.
Conclusions Following three-dose COVID-19 vaccination, antibody response durability in PLWH receiving ART is comparable to controls. PLWH also mounted strong responses to breakthrough infection. Due to temporal response declines however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by funding from Genome BC, the Michael Smith Foundation for Health Research, and the BCCDC Foundation for Public Health through a rapid SARS-CoV-2 vaccine research initiative in BC award (VAC-009 to ZLB, MAB). It was also supported by the Public Health Agency of Canada (PHAC) through two COVID-19 Immunology Task Force (CITF) COVID-19 Awards (the first to ZLB, MGR, MAB and the second to CTC, CC, AHA). It was also supported in part by the Canada Foundation for Innovation through two Exceptional Opportunities Fund COVID-19 awards (the first to CJB, CFL, MLD, and the second to MN, MAB, ZLB), a British Columbia Ministry of Health-Providence Health Care Research Institute COVID-19 Research Priorities Grant (to CJB and CFL) and the CIHR Canadian HIV Trials Network (CTN) (to AHA). MLD and ZLB hold Scholar Awards from the Michael Smith Foundation for Health Research. FA was supported by an SFU Undergraduate Research Award. GU and FHO are supported by Ph.D. fellowships from the Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE), a DELTAS Africa Initiative [grant # DEL-15-006]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)'s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa's Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [grant # 107752/Z/15/Z] and the UK government. The views expressed in this publication are those of the authors and not necessarily those of PHAC, CITF, AAS, NEPAD Agency, Wellcome Trust, the Canadian or UK governments or other funders.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Research Ethics Boards of Simon Fraser University and University of British Columbia/Providence Health Care gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
author affiliations updated to match manuscript institutions. Note that there are no clear instructions on how to add multiple affiliations to authors in the "Author list" section of a submission, nor in the Help section. In this regard, I have several co-authors for whom I cannot add a third affiliation as there is a character limit in the affiliation/institution section. Please advise on how to add these affiliations, or please add them yourself if possible. The authors are listed below, and the third affiliation to be added is also below. Authors requiring a third affiliation: Victor Leung Christopher F. Lowe Marc G. Romney Third affiliation to be added to above authors: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
Data Availability
All data produced in the present study are available upon reasonable request to the authors.