Abstract
Background Multi-system inflammatory syndrome in children (MIS-C) represents one of the most severe post-acute sequelae of SARS-CoV-2 infection in children, and there is a critical need to characterize its disease patterns for improved recognition and management. Our objective was to characterize subphenotypes of MIS-C based on presentation, demographics and laboratory parameters.
Methods We conducted a retrospective cohort study of children with MIS-C from March 1, 2020 - April 30, 2022 and cared for in 8 pediatric medical centers that participate in PEDSnet. We included demographics, symptoms, conditions, laboratory values, medications and outcomes (ICU admission, death), and grouped variables into eight categories according to organ system involvement. We used a heterogeneity-adaptive latent class analysis model to identify three clinically-relevant subphenotypes. We further characterized the sociodemographic and clinical characteristics of each subphenotype, and evaluated their temporal patterns.
Findings We identified 1186 children hospitalized with MIS-C. The highest proportion of children (44·4%) were aged between 5-11 years, with a male predominance (61.0%), and non- Hispanic white ethnicity (40·2%). Most (67·8%) children did not have a chronic condition. Class 1 represented children with a severe clinical phenotype, with 72·5% admitted to the ICU, higher inflammatory markers, hypotension/shock/dehydration, cardiac involvement, acute kidney injury and respiratory involvement. Class 2 represented a moderate presentation, with 4-6 organ systems involved, and some overlapping features with acute COVID-19. Class 3 represented a mild presentation, with fewer organ systems involved, lower CRP, troponin values and less cardiac involvement. Class 1 initially represented 51·1% of children early in the pandemic, which decreased to 33·9% from the pre-delta period to the omicron period.
Interpretation MIS-C has a spectrum of clinical severity, with degree of laboratory abnormalities rather than the number of organ systems involved providing more useful indicators of severity. The proportion of severe/critical MIS-C decreased over time.
Evidence before this study We searched PubMed and preprint articles from December 2019, to July 2022, for studies published in English that investigated the clinical subphenotypes of MIS-C using the terms “multi-system inflammatory syndrome in children” or “pediatric inflammatory multisystem syndrome” and “phenotypes”. Most previous research described the symptoms, clinical characteristics and risk factors associated with MIS-C and how these differ from acute COVID-19, Kawasaki Disease and Toxic Shock Syndrome. One single-center study of 63 patients conducted in 2020 divided patients into Kawasaki and non-Kawasaki disease subphenotypes. Another CDC study evaluated 3 subclasses of MIS-C in 570 children, with one class representing the highest number of organ systems, a second class with predominant respiratory system involvement, and a third class with features overlapping with Kawasaki Disease. However, this study evaluated cases from March to July 2020, during the early phase of the pandemic when misclassification of cases as Kawasaki disease or acute COVID-19 may have occurred. Therefore, it is not known from the existing literature whether the presentation of MIS-C has changed with newer variants such as delta and omicron.
Added value of this study PEDSnet provides one of the largest MIS-C cohorts described so far, providing sufficient power for detailed analyses on MIS-C subphenotypes. Our analyses span the entire length of the pandemic, including the more recent omicron wave, and provide an update on the presentations of MIS-C and its temporal dynamics. We found that children have a spectrum of illness that can be characterized as mild (lower inflammatory markers, fewer organ systems involved), moderate (4-6 organ involvement with clinical overlap with acute COVID-19) and severe (higher inflammatory markers, critically ill, more likely to have cardiac involvement, with hypotension/shock and need for vasopressors).
Implications of all the available evidence These results provide an update to the subphenotypes of MIS-C including the more recent delta and omicron periods and aid in the understanding of the various presentations of MIS-C. These and other findings provide a useful framework for clinicians in the recognition of MIS-C, identify factors associated with children at risk for increased severity, including the importance of laboratory parameters, for risk stratification, and to facilitate early evaluation, diagnosis and treatment.
Competing Interest Statement
Dr. Mejias reports funding from Janssen, Merck for research support, and Janssen, Merck and Sanofi-Pasteur for Advisory Board participation; Dr. Rao reports prior grant support from GSK and Biofire. Dr. Chen receives consulting support from GSK. Dr. Jhaveri is a consultant for AstraZeneca, Seqirus and Dynavax, and receives an editorial stipend from Elsevier. All other authors have no conflicts of interest to disclose.
Funding Statement
This research was funded by the National Institutes of Health (NIH) Agreement OT2HL161847-01 as part of the Researching COVID to Enhance Recovery (RECOVER) program of research.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Children's Hospital of Philadelphia's Institutional Review Board designated this study as not human subjects' research and waived informed consent.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Funding Source: This research was funded by the National Institutes of Health (NIH) Agreement OT2HL161847-01 as part of the Researching COVID to Enhance Recovery (RECOVER) program of research.
Disclaimer: The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the NIH.
Data Availability
The data is not publicly available due to privacy concerns. The individual de-identified participant data will not be shared. The data that support the findings of this study may be available through request and DUA process to the corresponding authors.
Abbreviations
- LCA
- latent class analyses
- MIS-C
- multisystem inflammatory syndrome in children
- PASC
- post-acute sequelae of SARS-CoV-2 infection
- COVID-19
- coronavirus disease 2019
- SARS-CoV-2
- severe acute respiratory syndrome coronavirus 2
- PCR
- polymerase chain reaction
- EHR
- electronic health record
- ED
- emergency department
- UC
- urgent care
- ICU—
- intensive care unit
- CI
- confidence intervals
- ICD-10
- International Classification of Diseases, version 10
- PMCA
- Pediatric Medical Complexity Algorithm