Abstract
Modeling and simulation are important tools that can be used to control, prevent and understand an epidemic spread. This paper introduces a symptomatic-asymptomatic-recoverer-death differential equation model (SARDDE). It presents the conditions of the asymptotical stability on the disease-free equilibrium of the SARDDE. It proposes the necessary conditions of disease spreading for the SARDDE. Based on the reported data of the first and the second COVID-19 epidemics in Beijing and simulations, it determines the parameters of the SARDDE, respectively. Numerical simulations of the SARDDE describe well the outcomes of current symptomatic and asymptomatic individuals, recovered symptomatic and asymptomatic individuals, and died individuals, respectively. The numerical simulations suggest that both symptomatic and asymptomatic individuals cause lesser asymptomatic spread than symptomatic spread; the blocking rates of about 90% and 97% to the symptomatic individuals cannot prevent the spread of the first and second COVID19 epidemics in Beijing, respectively. Virtual simulations suggest that the strict prevention and control strategies implemented by Beijing government are effective and necessary. The numerical simulations suggest also that using the data from the beginning to the days after about two weeks from the turning points can estimate approximately the following outcomes of the two COVID-19 academics, respectively. A recommendation to avoid multiple epidemic outbreaks is proposed. It is expected that the research can provide better understanding, explaining, and dominating for epidemic spreads, prevention and control measures.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding supported in the work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No IRB/oversight body that provided approval or exemption for the research.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.