Abstract
Single-molecule detection of pathogens such as SARS-CoV-2 is key to combat infectious diseases outbreak and pandemic. Currently colorimetric sensing with loop-mediated isothermal amplification (LAMP) provides simple readouts but suffers from intrinsic non-template amplification. Herein, we report that plasmonic sensing of LAMP amplicons via DNA hybridization allows highly specific and single-molecule detection of SARS-CoV-2 RNA. Our work has two important advances. First, we develop gold and silver alloy (Au-Ag) nanoshells as plasmonic sensors that have 4-times stronger extinction in the visible wavelengths and give 20-times lower detection limit for oligonucleotides than Au nanoparticles. Second, we demonstrate that the diagnostic method allows cutting the complex LAMP amplicons into short repeats that are amendable for hybridization with oligonucleotide-functionalized nanoshells. This additional sequence identification eliminates the contamination from non-template amplification. The detection method is a simple and single-molecule diagnostic platform for virus testing at its early representation.
Competing Interest Statement
Z.Q., L.B. and H.Y. are the inventors on a provisional patent related to this work filed by University of Texas at Dallas.
Funding Statement
This work was supported in part by National Institutes of Health (NIH) grant R01AI151374, and U.S. Department of Defense (DOD) grant PR192581, NSF grant 1361355 and Cecil H. and Ida Green Endowment.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study was approved by Institutional Review Board (IRB) at the University of Texas at Dallas (ID: 20MR0093).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data are available on request from the corresponding authors.