Abstract
SARS-CoV-2 is spread primarily through person-to-person contacts. Quantifying population contact rates is important for understanding the impact of physical distancing policies and for modeling COVID-19, but contact patterns have changed substantially over time due to shifting policies and behaviors. There are surprisingly few empirical estimates of age-structured contact rates in the United States both before and throughout the COVID-19 pandemic that capture these changes. Here, we use data from six waves of the Berkeley Interpersonal Contact Survey (BICS), which collected detailed contact data between March 22, 2020 and February 15, 2021 across six metropolitan designated market areas (DMA) in the United States. Contact rates were low across all six DMAs at the start of the pandemic. We find steady increases in the mean and median number of contacts across these localities over time, as well as a greater proportion of respondents reporting a high number of contacts. We also find that young adults between ages 18 and 34 reported more contacts on average compared to other age groups. The 65 and older age group consistently reported low levels of contact throughout the study period. To understand the impact of these changing contact patterns, we simulate COVID-19 dynamics in each DMA using an age-structured mechanistic model. We compare results from models that use BICS contact rate estimates versus commonly used alternative contact rate sources. We find that simulations parameterized with BICS estimates give insight into time-varying changes in relative incidence by age group that are not captured in the absence of these frequently updated estimates. We also find that simulation results based on BICS estimates closely match observed data on the age distribution of cases, and changes in these distributions over time. Together these findings highlight the role of different age groups in driving and sustaining SARS-CoV-2 transmission in the U.S. We also show the utility of repeated contact surveys in revealing heterogeneities in the epidemiology of COVID-19 across localities in the United States.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Seed funding was provided by a Berkeley Population Center pilot grant (NICHD P2CHD073964) and further funding was provided by the Hellman Fellows Program.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All survey respondents provided informed consent and the project was approved by the UC Berkeley IRB (Protocol 2020-03-13128).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data and code to reproduce all results and figures can be found at https://github.com/taylor-chin/bics-age-model-release.