Abstract
Background SARS-CoV-2 variants, such as Alpha, Beta, Gamma and Delta, are raising concern about the efficiency of neutralizing antibodies (NAb) induced by wild-type infection or vaccines based on the wild-type spike.
Methods We determined IgG and NAb against SARS-CoV-2 variants one year following mild wild-type infection (n=104) and two-dose regimens with BNT162b2 (BNT/BNT) (n=67), ChAdOx1 (ChAd/ChAd) (n=82), or heterologous ChAdOx1 followed by BNT162b2 (ChAd/BNT) (n=116).
Findings Wild type spike IgG and NAb remained detectable in 80% (83/104) of unvaccinated participants one year post mild infection. The neutralizing capacity was similar against wild type (reference), Alpha (0.95 (0.92-0.98) and Delta 1.03 (0.95-1.11) but significantly reduced against Beta (0.54 (0.48-0.60)) and Gamma 0.51 (0.44-0.61). Similarly, BNT/BNT and ChAd/ChAd elicited sustained capacity against Alpha and Delta (1.01 (0.78-1.31) and 0.85 (0.64-1.14)) and (0.96 (0.84-1.09) and 0.82 (0.61-1.10) respectively), with reduced capacity against Beta (0.67 (0.50-0.88) and 0.53 (0.40-0.71)) and Gamma (0.12 (0.06-0.27) and 0.54 (0.37-0.80)). A similar trend was found following ChAd/BNT (0.74 (0.66-0.83) and 0.70 (0.50-0.97) against Alpha and Delta and 0.29 (0.20-0.42) and 0.13 (0.08-0.20) against Beta and Gamma).
Interpretation Persistent neutralization of the wide-spread Alpha and Delta variants one year after wild-type infection may aid vaccine policy makers in low-resource settings when prioritizing vaccine supply. The reduced capacity of neutralizing Beta and Gamma strains, but not the Alpha and Delta strains following both infection and three different vaccine regimens argues for caution against Beta and Gamma-exclusive mutations in the efforts to optimize next generation SARS-CoV-2 vaccines.
Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgements section
Competing Interest Statement
SoH has participated on Astra Zeneca COVID-19 SCG Virtual Advisory Board. Otherwise, the authors declare no competing interests.
Funding Statement
This work was funded by Jonas & Christina af Jochnick foundation; Lundblad family foundation; Region Stockholm; Knut and Alice Wallenberg foundation; Science for Life Laboratory (SciLifeLab); Erling-Persson family foundation; CIMED and the Swedish Research Council.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study was approved by the Swedish Ethical Review Authority (dnr 2020-01653), and written informed consent was obtained from all study participants.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.