ABSTRACT
Purpose To develop a reliable tool that predicts which patients are most likely to be COVID-19 positive and which ones have an increased risk of hospitalization.
Methods From February 2020 to April 2021, trained nurses recorded age, gender, and symptoms in an outpatient COVID-19 testing center. All positive patients were followed up by phone for 14 days or until symptom-free. We calculated the symptoms odds ratio for positive results and hospitalization and proposed a “random forest” machine-learning model to predict positive testing.
Results A total of 8,998 patients over 16 years old underwent COVID-19 RT-PCR, with 1,914 (21.3%) positives. Fifty patients needed hospitalization (2.6% of positives), and three died (0.15%). Most common symptoms were: cough, headache, sore throat, coryza, fever, myalgia (57%, 51%, 44%, 36%, 35%, 27%, respectively). Cough, fever, and myalgia predicted positive COVID-19 test, while others behaved as protective factors. The best predictors of positivity were fever plus anosmia/ageusia (OR=6.31), and cough plus anosmia/ageusia (OR=5.82), both p<0.0001. Our random forest model had an ROC-AUC of 0.72 (specificity=0.70, sensitivity=0.61, PPV=0.38, NPV=0.86). Having steady fever during the first days of infection and persistent dyspnea increased the risk of hospitalization (OR=6.66, p<0.0001 and OR=3.13, p=0.003, respectively), while anosmia-ageusia (OR=0.36, p=0.009) and coryza (OR=0.31, p=0.014) were protective.
Conclusion Present study and algorithm may help identify patients at higher risk of having SARS-COV-2 (online calculator http://wdchealth.covid-map.com/shiny/calculator/), and also disease severity and hospitalization based on symptoms presence, pattern, and duration, which can help physicians and health care providers.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Coordination for the Improvement of Higher Education Personnel CAPES: 88887.506617/2020-00 and National Council for Scientific and Technological Development CNPq, Research Productivity: 304747/2018-1 The funder had no involvement in study design, data collection, data analysis, manuscript preparation, and/or publication decisions.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
University of Campinas ethics committee approval number: 4.173.069
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.