Abstract
Timely and accurate diagnostics are essential to fight the COVID-19 pandemic, but no test satisfies both conditions. Dogs can scent-identify the unique odors of the volatile organic compounds generated during infection by interrogating specimens or, ideally, the body of a patient. After training 6 dogs to detect SARS-CoV-2 in human respiratory secretions (in vitro scent-detection), we retrained 5 of them to diagnose the infection by scenting the patient directly (in vivo scent-detection). Then, efficacy trials were designed to compare the diagnostic performance of the dogs against that of the rRT-PCR in 848 human subjects: 269 hospitalized patients (COVID-19 prevalence 30.1%), 259 hospital staff (prevalence 2.7%), and 320 government employees (prevalence 1.25%). The limit of detection in vitro was lower than 10-12 copies ssRNA/mL. In vivo, all dogs detected 92 COVID-19 patients present among the 848 study subjects. Detection was immediate, and independent of prevalence, time post-exposure, or presence of symptoms, with 95.2% accuracy and high sensitivity (95.9%; 95% C.I. 93.6-97.4), specificity (95.1%; 94.4-95.8), positive predictive value (69.7%; 65.9-73.2), and negative predictive value (99.5%; 99.2-99.7). To determine real-life performance, we waited 75 days to carry out an effectiveness assay among the riders of the Metro System of Medellin, deploying the human-canine teams without previous training or announcement. Three dogs (one of each breed) scent-interrogated 550 citizens who volunteered for simultaneous canine and rRT-PCR testing. Negative predictive value remained at 99.0% (95% C.I. 98.3-99.4), but positive predictive value dropped to 28.2% (95% C.I. 21.1-36.7). Canine scent-detection in vivo is a highly accurate screening test for COVID-19, and it detects more than 99% of infected individuals independently of the key variables. However, real-life conditions increased substantially the number of false positives, indicating the necessity of training a threshold for the limit of detection to discriminate environmental odoriferous contamination from infection.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Protocols
https://www.biorxiv.org/content/10.1101/2020.06.17.158105v1
Funding Statement
No external funding was received. The study was finished thanks to donations from three individuals (Mauricio Palacio, Juan M. Sierra, and Flor Saldarriaga) and one institution (ISA: Interconexion Electrica S.A.). None is dedicated to funding science, but all wanted to see this project become a reality. The authors or their institutions did not receive payment or services from a third party for any aspect of the submitted work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Research Ethics Committee of Hospital Universitario San Vicente Fundacion, Medellin, Colombia.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data is included in the manuscript and available to any party interested.