Abstract
To respond to pandemics such as COVID-19, policy makers have relied on interventions that target specific population groups or activities. Such targeting is potentially contentious, so rigorously quantifying its benefits and downsides is critical for designing effective and equitable pandemic control policies. We propose a flexible modeling framework and a set of associated algorithms that compute optimally targeted, time-dependent interventions that coordinate across two dimensions of heterogeneity: population group characteristics and the specific activities that individuals engage in during the normal course of a day. We showcase a complete implementation in a case study focused on the Île-de-France region of France, based on commonly available hospitalization, community mobility, social contacts and economic data. We find that optimized dual-targeted policies have a simple and explainable structure, imposing less confinement on group-activity pairs that generate a relatively high economic value prorated by activity-specific social contacts. When compared to confinements based on uniform or less granular targeting, dual-targeted policies generate substantial complementarities that lead to Pareto improvements, reducing the number of deaths and the economic losses overall and reducing the time in confinement for each population group. Since dual-targeted policies could lead to increased discrepancies in the confinements faced by distinct groups, we also quantify the impact of requirements that explicitly limit such disparities, and find that satisfactory intermediate trade-offs may be achievable through limited targeting.
Significance Statement In the fight against pandemics such as COVID-19, policy makers rely on interventions that target distinct groups of individuals or activities for confinement. Such targeting can however lead to contentious policies that excessively confine certain groups like the elderly, so it is critical to understand its relative merits. We propose and implement a rigorous framework to quantify these merits and demonstrate it in a case study of COVID-19 interventions in Île-de-France. We find that optimally designed interventions that differentiate based on both population groups and activities achieve significantly better health and economic outcomes overall and also reduce confinement time for each group, compared to less targeted interventions. The implementation, publicly available at http://insead.arnia.ro, is flexible and portable to other geographies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All relevant ethical guidelines have been followed. No necessary IRB/ethics committee approvals, to the best of our knowledge.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data referred to in the manuscript are public and URL references to the datasets are included in the manuscript.