Abstract
The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.
Highlights
The global dose supply of COVID-19 vaccines will be constrained in 2021
Within a country, prioritising doses to protect those at highest mortality risk is efficient
For a 2 billion dose supply in 2021, allocating to countries according to population size is efficient and equitable
Competing Interest Statement
The authors declare grants from The Wellcome Trust (NMF, ACG), UK Medical Research Council (NMF, ACG, KH), National Institute for Health Research (NMF, KH), Community Jameel (NMF, KH), the UK Foreign, Commonwealth and Development Office (OJW) and the Bill and Melinda Gates Foundation (NMF), during the conduct of the study; grants from the Bill and Melinda Gates Foundation (ACG), National Institute for Health (ACG), GlaxoSmithKline (AL), and Gavi, the Vaccine Alliance (ACG, KAMG) outside the submitted work; personal fees from the World Health Organization (ACG, ABH, MB, PW) during the conduct of the study, in relation to developing the online interface (approximately GBP 1,000 per individual); and personal fees from The Global Fund (ACG, PW) outside the submitted work. ABH was previously engaged by Pfizer Inc to advise on modelling RSV vaccination strategies for which she received no financial compensation. There are no other relationships or activities that could appear to have influenced the submitted work.
Funding Statement
PW and ABH acknowledge fellowship funding from Imperial College London. PGTW, OJW, ACG and NMF acknowledge grant funding from The Wellcome Trust and the UK Foreign, Commonwealth & Development Office (FCDO). CW acknowledges support through a Medical Research Council (MRC) Doctoral Training Programme studentship. NB, GC and ACG acknowledge support from the Bill and Melinda Gates Foundation. All authors acknowledge funding support for the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK MRC and the UK FCDO, under the MRC/FCDO Concordat agreement, also part of the EDCTP2 programme supported by the European Union. NMF and KH acknowledge funding by Community Jameel. NMF acknowledges support from the NIHR HPRU in Modelling and Health Economics, a partnership between PHE, Imperial College London and LSHTM (grant code NIHR200908). ACG, ABH, MB, and PW received personal fees from the World Health Organization in relation to developing the online interface (approximately GBP 1,000 per individual), and the WHO provided input into the design of and data underpinning the online interface. The funders had no other role in study design, conduct, or interpretation of results. Disclaimer: The views expressed are those of the authors and not necessarily those of the United Kingdom (UK) Department of Health and Social Care, the National Health Service, the National Institute for Health Research (NIHR), or Public Health England (PHE).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
NA
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The open-source model code is available as an R package at https://github.com/mrc-ide/nimue, and the code to perform the analysis and generate the tables and figures, is available to download at https://github.com/mrc-ide/covid_vaccine_allocation.