Abstract
Background Chest pain is the second leading reason for emergency department (ED) visits and is commonly identified as a leading driver of low-value health care. Accurate identification of patients at low risk of major adverse cardiac events (MACE) is important to improve resource allocation and reduce over-treatment.
Objectives We sought to assess machine learning (ML) methods and electronic health record (EHR) covariate collection for MACE prediction. We aimed to maximize the pool of low-risk patients that are accurately predicted to have less than 0.5% MACE risk and may be eligible for reduced testing.
Population Studied 116,764 adult patients presenting with chest pain in the ED and evaluated for potential acute coronary syndrome (ACS). 60-day MACE rate was 1.9%.
Methods We evaluated ML algorithms (lasso, splines, random forest, extreme gradient boosting, Bayesian additive regression trees) and SuperLearner stacked ensembling. We tuned ML hyperparameters through nested ensembling, and imputed missing values with generalized low-rank models (GLRM). We benchmarked performance to key biomarkers, validated clinical risk scores, decision trees, and logistic regression. We explained the models through variable importance ranking and accumulated local effect visualization.
Results The best discrimination (area under the precision-recall [PR-AUC] and receiver operating characteristic [ROC-AUC] curves) was provided by SuperLearner ensembling (0.148, 0.867), followed by random forest (0.146, 0.862). Logistic regression (0.120, 0.842) and decision trees (0.094, 0.805) exhibited worse discrimination, as did risk scores [HEART (0.064, 0.765), EDACS (0.046, 0.733)] and biomarkers [serum troponin level (0.064, 0.708), electrocardiography (0.047, 0.686)]. The ensemble’s risk estimates were miscalibrated by 0.2 percentage points. The ensemble accurately identified 50% of patients to be below a 0.5% 60-day MACE risk threshold. The most important predictors were age, peak troponin, HEART score, EDACS score, and electrocardiogram. GLRM imputation achieved 90% reduction in root mean-squared error compared to median-mode imputation.
Conclusion Use of ML algorithms, combined with broad predictor sets, improved MACE risk prediction compared to simpler alternatives, while providing calibrated predictions and interpretability. Standard risk scores may neglect important health information available in other characteristics and combined in nuanced ways via ML.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by a Kaiser Permanente Division of Research Delivery Science Research Grant.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Approved by the Kaiser Permanente Division of Research IRB.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* chris_kennedy{at}hms.harvard.edu
1 Here X refers to the reduced components after GLRM transformation, and Y refers to the complementary matrix that transforms those components back to the original covariate space. It does not refer to the outcome variable.
2 The number of covariates sampled (i.e. mtry) was based on the formula: floor({ 0.5, 1, 2}··) where p is the total number of covariates.
Data Availability
The dataset contains protected health information and is not shareable.