Abstract
We introduce a lightweight model based on Mask R-CNN with ResNet18 and ResNet34 backbone models that segments lesions and predicts COVID-19 from chest CT scans in a single shot. The model requires a small dataset to train: 650 images for the segmentation branch and 3000 for the classification branch, and it is evaluated on 21292 images to achieve a 42.45% average precision (main MS COCO criterion) on the segmentation test split (100 images), 93.00% COVID-19 sensitivity and F1-score of 96.76% on the classification test split (21192 images) across 3 classes: COVID-19, Common Pneumonia and Control/Negative. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-Single-Shot-Model.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
N/A
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes