Abstract
Background The limitations of widespread current COVID-19 diagnostic testing lie at both pre-analytical and analytical stages. Collection of nasopharyngeal swabs is invasive and is associated with exposure risk, high cost, and supply-chain constraints. Additionally, the RNA extraction in the analytical stage is the most significant rate-limiting step in the entire testing process. To alleviate these limitations, we developed a universal saliva processing protocol (SalivaSTAT) that would enable an extraction free RT-PCR test using any of the commercially available RT-PCR kits.
Methods We optimized saliva collection devices, heat-shock treatment and homogenization. The effect of homogenization on saliva samples for extraction-free RT-PCR assay was determined by evaluating samples with and without homogenization and preforming viscosity measurements. Saliva samples (872) previously tested using the FDA-EUA method were reevaluated with the optimized SalivaSTAT protocol using two widely available commercial RT-PCR kits. Further, a five-sample pooling strategy was evaluated as per FDA guidelines using the SalivaSTAT protocol.
Results The saliva collection (done without any media) performed comparable to the FDA-EUA method. The SalivaSTAT protocol was optimized by incubating saliva samples at 95°C for 30-minutes and homogenization, followed by RT-PCR assay. The clinical sample evaluation of 630 saliva samples using the SalivaSTAT protocol with PerkinElmer (600-samples) and CDC (30-samples) RT-PCR assay achieved positive (PPA) and negative percent agreement (NPA) of 95.8% and 100%, respectively. The LoD was established as ∼20-60 copies/ml by absolute quantification. Further, a five-sample pooling evaluation using 250 saliva samples achieved a PPA and NPA of 92% and 100%, respectively.
Conclusion We have optimized an extraction-free direct RT-PCR assay for saliva samples that demonstrated comparable performance to FDA-EUA assay (Extraction and RT-PCR). The SalivaSTAT protocol is a rapid, sensitive, and cost-effective method that can be adopted globally, and has the potential to meet testing needs and may play a significant role in management of the current pandemic.
Competing Interest Statement
RK has received honoraria, travel funding, and research support from Illumina, Asuragen, QIAGEN, and BMS. MH hold stock options at PerkinElmer Inc.
Funding Statement
No funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
AUIRB-HAC : 611298
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All relevant information/ data is provided in the manuscript or in supplementary file.