Abstract
Though sophisticated algorithms have been developed for the classification of free-text radiology reports for pulmonary embolism (PE), their overall generalizability remains unvalidated given limitations in sample size and data homogeneity. We developed and validated a highly generalizable deep-learning based NLP algorithm for this purpose with data sourced from over 2,000 hospital sites and 500 radiologists. The algorithm achieved an AUCROC of 0.995 on chest angiography studies and 0.994 on non-angiography studies for the presence or absence of PE. The high accuracy achieved on this large and heterogeneous dataset allows for the possibility of application in large multi-center radiology practices as well as for deployment at novel sites without significant degradation in performance.
Competing Interest Statement
Lawrence Ngo and Jacob Johnson are Co-Founders of CoRead AI. Lawrence Ngo and Chrisitine Lamoureux work as radiologists for Virtual Radiologic.
Funding Statement
No external funding was provided for this study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was approved with a waiver of consent by Western IRB.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.