Abstract
Coronavirus disease 2019 (COVID-19) has caused strain on health systems worldwide due to its high mortality rate and the large portion of cases requiring critical care and mechanical ventilation. During these uncertain times, public health decision makers, from city health departments to federal agencies, sought the use of epidemiological models for decision support in allocating resources, developing non-pharmaceutical interventions, and characterizing the dynamics of COVID-19 in their jurisdictions. In response, we developed a flexible scenario modeling pipeline that could quickly tailor models for decision makers seeking to compare projections of epidemic trajectories and healthcare impacts from multiple intervention scenarios in different locations. Here, we present the components and configurable features of the COVID Scenario Pipeline, with a vignette detailing its current use. We also present model limitations and active areas of development to meet ever-changing decision maker needs.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
JCL, KHG, JK, HRM, SAT, SAL, LTK, JPS, JL, and ECL were supported by the State of California. JCL, JK, SAT, SAL, LTK, JPS, JL, and ECL were supported by the U.S. Department of Health and Human Services and the U.S. Department of Homeland Security. JCL acknowledges funds provided by the Swiss National Science Foundation (200021-172578) and the attached mobility grant. SAT acknowledges funds provided by the U.S. Office of Foreign Disaster Assistance (130492) and the Centers for Disease Control and Prevention (126280). LTK acknowledges funds provided by the Centers for Disease Control and Prevention (5U01CK000538-03) and the University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant). This work was also supported with computing service credits from Amazon Web Services and more generally by the Johns Hopkins Health System and the Office of the Dean at the Johns Hopkins Bloomberg School of Public Health.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.