Micronutrient Deficiencies, Over- and Undernutrition, and Their Contribution to Anemia in Azerbaijani Preschool Children and Non-Pregnant Women of Reproductive Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Design and Participants
2.2. Data Collection and Laboratory Analysis
2.3. Parameters and Clinical Thresholds
2.4. Data Management and Statistical Analysis
2.5. Ethics and Consent
3. Results
4. Discussion
4.1. Micronutrient Deficiencies: Prevalence
4.2. Under- and Overweight: Prevalence
4.3. Anemia Prevalence and Risk Factors in Children
4.4. Anemia Prevalence and Risk Factors in Non-Pregnant Women
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, P.Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar] [CrossRef]
- WHO. Iron Deficiency Anaemia: Assessment, Prevention, and Control. In A Guide for Programme Managers; World Heal Organ: Geneva, Switzerland, 2001; p. 114. [Google Scholar]
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014, 123, 615–624. [Google Scholar] [CrossRef] [PubMed]
- WHO; FAO. Guidelines on Food Fortification with Micronutrients; Allen, L., de Benoist, B., Dary, O., Hurrell, R., Eds.; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef]
- WHO. Guideline: Optimal Serum and Red Blood Cell Folate Concentrations in Women of Reproductive Age for Prevention of Neural Tube Defects; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Metz, J. A high prevalence of biochemical evidence of vitamin B12 or folate deficiency does not translate into a comparable prevalence of anemia. Food Nutr. Bull. 2008, 29, S74–S85. [Google Scholar] [CrossRef] [PubMed]
- De-regil, L.M.; Fernández-gaxiola, A.C.; Dowswell, T.; Peña, J.P. Effects and safety of periconceptional fotale supplementation for preventing birth defects. Cochrame Database Syst. Rev. 2014, 2, 1–135. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Modell, B.; Lawn, J. Folic acid to reduce neonatal mortality from neural tube disorders. Int. J. Epidemiol. 2010, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNICEF. Azerbaijan Nutrition Survey, 2013; UNICEF: Baku, Azerbaijan, 2015. [Google Scholar]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [PubMed]
- O’Broin, S.D.; Kelleher, B.P.; Davoren, A.; Gunter, E.W. Field-study screening of blood folate concentrations: Specimen stability and finger-stick sampling. Am. J. Clin. Nutr. 1997, 66, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Available online: http://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 15 May 2018).
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [PubMed]
- WHO. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations. In Vitamin and Mineral Nutrition Information System; Switzerland: Geneva, Switzerland, 2011. [Google Scholar]
- Thurnham, D.I.; McCabe, G.P.; Northrop-Clewes, C.A.; Nestel, P. Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: Meta-analysis. Lancet 2003, 362, 2052–2058. [Google Scholar] [CrossRef]
- Hix, J.; Rasca, P.; Morgan, J.; Denna, S.; Panagides, D.; Tam, M.; Shankar, A.H. Validation of a rapid enzyme immunoassay for the quantitation of retinol-binding protein to assess vitamin A status within populations. Eur. J. Clin. Nutr. 2006, 60, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- WHO. Serum Retinol Concentrations for Determining the Prevalence of Vitamin A Deficiency in Populations. Available online: http://www.who.int/vmnis/indicators/retinol.pdf (accessed on 15 May 2018).
- Tanumihardjo, S.A. Biomarkers of Vitamin A Status, What Do They Mean? Available online: http://www.who.int/nutrition/publications/micronutrients/background_paper2_report_assessment_vitAandIron_status.pdf (accessed on 15 May 2018).
- Thurnham, D.I.; Mburu, A.S.W.; Mwaniki, D.L.; Muniu, E.M.; Alumasa, F.; de Wagt, A. Using plasma acute-phase protein concentrations to interpret nutritional biomarkers in apparently healthy HIV-1-seropositive Kenyan adults. Br. J. Nutr. 2008, 100, 174–182. [Google Scholar] [CrossRef] [PubMed]
- IZiNCG Secretariat. Assessing Population Zinc Status with Serum Zinc Concentration; IZiNCG—Technical Brief; IZiNCG: Davis, CA, USA, 2012. [Google Scholar]
- De Benoist, B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 2008, 29, S238–S244. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; Group MGRS, Ed.; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Shetty, P.S.; James, W.P. Body mass index. In A Measure of Chronic Energy Deficiency in Adults; FAO: Roma, Italy, 1994; pp. 1–57. [Google Scholar]
- Lee, J.; Chuen, S.T.; Kee, S.C. A practical guide for multivariate analysis of dichotomous outcomes. Ann. Acad. Med. Singap. 2009, 38, 714–719. [Google Scholar] [PubMed]
- Rockhill, B.; Newman, B.; Weinberg, C. Use and misuse of population attributable fractions. Am. J. Public Health 1998, 88, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Olofin, I.; Hurrell, R.F.; Boy, E.; Wirth, J.P.; Moursi, M.; Angel, M.D.; Rohner, F. The proportion of anemia associated with iron deficiency in low, medium, and high human development index countries: A systematic analysis of national surveys. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Food Fortification Initiative. Country Profile—Azerbaijan. Available online: http://ffinetwork.org/country_profiles/country.php?record=52 (accessed on 7 June 2017).
- Hurrell, R.F.; Reddy, M.B.; Burri, J.; Cook, J.D. An evaluation of EDTA compounds for iron fortification of cereal-based foods. Br. J. Nutr. 2000. [Google Scholar] [CrossRef]
- Wirth, J.P.; Petry, N.; Tanumihardjo, S.A.; Rogers, L.M.; McLean, E.; Greig, A.; Garrett, G.S.; Klemm, R.D.W.; Rohner, F. Vitamin a supplementation programs and country-level evidence of vitamin A deficiency. Nutrients 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007. [Google Scholar] [CrossRef] [PubMed]
- IZiNCG. Countries with Serum Zinc Data. Available online: http://www.izincg.org/countries-serum-zinc-data/ (accessed on 8 June 2017).
- Hess, S.Y.; Lönnerdal, B.; Hotz, C.; Rivera, J.A.; Brown, K.H. Recent advances in knowledge of zinc nutrition and human health. Food Nutr. Bull. 2009, 30, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, S.; Storozhenko, S.; Mehrshahi, P.; Bennett, M.J.; Lambert, W.; Gregory, J.F.; Schubert, K.; Hugenholtz, J.; Van Der Straeten, D.; Hanson, A.D. Folate biofortification in food plants. Trends Plant Sci. 2008, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Nile, S.H.; Keum, Y.S. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res. Int. 2016, 1–13. [Google Scholar] [CrossRef] [PubMed]
- State Statistical Committee (Azerbaijan). Macro International. In Azerbaijan Demographic and Health Survey 2006; State Statistical Committee: Baku, Azerbaijan, 2008. [Google Scholar]
- Whitehead, R.D.; Zhang, M.; Sternberg, M.R.; Schleicher, R.L.; Drammeh, B.; Mapango, C.; Pfeiffer, C.M. Effects of preanalytical factors on hemoglobin measurement: A comparison of two HemoCue® point-of-care analyzers. Clin. Biochem. 2017, 50, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Engle-Stone, R.; Aaron, G.J.; Huang, J.; Wirth, J.P.; Namaste, S.M.; Williams, A.M.; Peerson, J.M.; Rohner, F.; Varadhan, R.; Addo, O.Y.; et al. Predictors of anemia in preschool children: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106. [Google Scholar] [CrossRef]
- Wirth, J.P.; Rohner, F.; Woodruff, B.A.; Chiwile, F.; Yankson, H.; Koroma, A.S.; Russel, F.; Sesay, F.; Dominguez, E.; Petry, N.; et al. Anemia, Micronutrient Deficiencies, and Malaria in Children and Women in Sierra Leone Prior to the Ebola Outbreak—Findings of a Cross-Sectional Study. PLoS ONE 2016, 11, e0155031. [Google Scholar] [CrossRef] [PubMed]
- Savitha, M.R.; Nandeeshwara, S.B.; Pradeep Kumar, M.J.; Ul-Haque, F.; Raju, C.K. Modifiable risk factors for acute lower respiratory tract infections. Indian J. Pediatr. 2007, 74, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Harerimana, J.-M.; Nyirazinyoye, L.; Thomson, D.R.; Ntaganira, J. Social, economic and environmental risk factors for acute lower respiratory infections among children under five years of age in Rwanda. Arch. Public Health 2016, 74, 19. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.Q.; Ashraf, M.; Wani, J.G.; Ahmed, J. Low Hemoglobin Level a Risk Factor for Acute Lower Respiratory Tract Infections (ALRTI) in Children. J. Clin. Diagn. Res. 2014, 8, PC01-3. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.; Mathews, K.H.; Pulanic, D.; Falconer, R.; Rudan, I.; Campbell, H.; Nair, H. Risk factors for severe acute lower respiratory infections in children: A systematic review and meta-analysis. Croat. Med. J. 2013, 54, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, S.J. Iron and its relation to immunity and infectious disease. J. Nutr. 2001, 131, 616S–635S. [Google Scholar] [CrossRef] [PubMed]
- Baqui, A.H.; Zaman, K.; Persson, L.A.; El Arifeen, S.; Yunus, M.; Begum, N.; Black, R.E. Simultaneous weekly supplementation of iron and zinc is associated with lower morbidity due to diarrhea and acute lower respiratory infection in Bangladeshi infants. J. Nutr. 2003, 133, 4150–4157. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Longo, D.L.; Piel, F.B.; Weatherall, D.J. The α-Thalassemias. N. Engl. J. Med. 2014, 371, 1908–1916. [Google Scholar] [CrossRef] [Green Version]
- Merrill, R.D.; Burke, R.M.; Northrop-Clewes, C.A.; Rayco-Solon, P.; Flores-Ayala, R.; Namaste, S.M.; Serdula, M.K.; Suchdev, P.S. Factors associated with inflammation in preschool children and women of reproductive age: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 348S–358S. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Number of Households | Percentage a | (95%CI) b |
---|---|---|---|
Residence (N = 3926) | |||
Rural | 2361 | 48.0 | (42.6, 53.4) |
Urban | 1565 | 52.0 | (46.6, 57.4) |
Region (N = 3926) | |||
Baku | 368 | 10.4 | (9.4,11.5) |
Absheron | 453 | 12.1 | (11.0, 13.4) |
Aran | 581 | 14.6 | (13.4, 15.9) |
Dagliq Shirvan | 370 | 9.2 | (8.7, 9.8) |
Ganja-Gazakh | 403 | 10.0 | (9.5, 10.6) |
Quba-Khachmaz | 450 | 11.1 | (10.7, 11.5) |
Lenkeran | 445 | 11.8 | (11.3, 12.4) |
Sheki-Zaqatala | 449 | 10.8 | (10.2, 11.5) |
Yukhari Karabakh | 407 | 9.9 | (9.3, 10.5) |
Sex of head of household (N = 3926) | |||
Male | 2961 | 75.1 | (73.1, 77.1) |
Female | 965 | 24.9 | (22.9, 26.9) |
Drinking water source (N = 3847) | |||
Improved | 3146 | 81.0 | (76.3, 85.0) |
Unimproved | 701 | 19.0 | (15.0, 23.7) |
Drinking water safety (N = 3886) | |||
Safe | 3591 | 92.5 | (90.2, 94.2) |
Unsafe | 295 | 7.5 | (5.8,9.8) |
Sanitation adequacy (N = 3919) | |||
Improved | 3038 | 80.0 | (76.8, 82.8) |
Unimproved | 881 | 20.0 | (17.2, 23.2) |
Characteristic | Preschool Children a | Non-Pregnant Women | ||||
---|---|---|---|---|---|---|
Number of Children Tested | %/Mean/Median b | (95%CI) c | Number of Women Tested | %/Mean/Median b | (95%CI) c | |
Hemoglobin (g/L), mean | 1111 | 116.3 | (115.3, 117.3) | 2704 | 121.7 | (120.8, 122.6) |
Anemia, % d | 1111 | 24.8 | (21.6, 28.2) | 2704 | 38.2 | (35.7; 40.8) |
Iron status e,f | ||||||
Ferritin, (µg/L), unweighted median | 1075 | 27.4 | (26.0, 28.9) | 2649 | 25.0 | (23.3, 26.3) |
Iron deficiency, % | 1075 | 14.9 | (12.4, 17.7) | 2647 | 34.2 | (31.7; 36.7) |
Iron deficiency anemia, % | 1099 | 6.7 | (5.2, 8.6) | 2645 | 23.8 | (21.8; 26.1) |
Vitamin A status e,g | ||||||
RBP, (µmol/L), mean | 1075 | 1.06 | (1.04, 1.09) | 2647 | 1.48 | (1.45, 1.50) |
Vitamin A deficiency, % | 1075 | 7.8 | (5.7; 10.7) | -- | -- | -- |
Vitamin A insufficiency, % | -- | -- | -- | 2647 | 10.5 | (9.0, 12.1) |
Zinc status | ||||||
Plasma zinc (µg/dL), mean | 1046 | 70.9 | (69.8, 72.0) | -- | -- | -- |
Zinc deficiency, % h | 1046 | 11.0 | (9.0, 13.4) | -- | -- | -- |
Folate status | ||||||
Plasma folate (ηmol/L), mean | -- | -- | -- | 2582 | 11.7 | (11.4, 12.0) |
Folate deficiency, % | -- | -- | -- | 2582 | 35.1 | (31.5; 38.9) |
Vitamin B12 status | ||||||
Plasma B12 (pmol/L), mean | -- | -- | -- | 1335 | 273.7 | (259.6, 287.8) |
Vitamin B12 deficiency, % | -- | -- | -- | 1335 | 19.6 | (16.0; 23.9) |
Inflammation | ||||||
No inflammation, % | 1080 | 68.1 | (64.4; 71.6) | 2647 | 64.1 | (61.6; 66.6) |
Elevated CRP only, % | 1080 | 1.0 | (0.6; 2.0) | 2647 | 3.1 | (2.3; 4.2) |
Elevated CRP and AGP, % | 1080 | 7.0 | (5.3; 9.2) | 2647 | 10.2 | (8.7; 11.9) |
Elevated AGP only, % | 1080 | 23.8 | (20.7; 27.3) | 2647 | 22.6 | (20.4; 25.0) |
Anthropometric categories in children | ||||||
HAZ, mean | 1455 | −0.70 | (−0.86, −0.52) | -- | -- | -- |
Stunting (≤−2 Z-scores), % | 1455 | 18.0 | (15.2, 21.3) | -- | -- | -- |
WHZ, mean | 1445 | 0.70 | (0.61, 0.79) | -- | -- | -- |
Any wasting (≤−2 Z-scores), % | 1455 | 3.1 | (2.2, 4.4) | -- | -- | -- |
Severe wasting, % i,j | 1455 | 1.1 | (0.7, 1.8) | -- | -- | -- |
Moderate wasting, % i,j | 1455 | 2.0 | (1.2, 3.1) | -- | -- | -- |
Normal, % i,j | 1455 | 82.8 | (80.0, 85.3) | -- | -- | -- |
Overweight, % i,j | 123 | 8.2 | (6.4, 10.4) | -- | -- | -- |
Obese, % i,j | 84 | 5.9 | (4.6, 7.5) | -- | -- | -- |
Anthropometric categories in non-pregnant women | ||||||
BMI, mean | -- | -- | -- | 2823 | 26.3 | (26.0, 26.6) |
Severe energy deficiency,% | -- | -- | -- | 2823 | 0.2 | (0.1, 0.5) |
Moderate energy deficiency,% | -- | -- | -- | 2823 | 0.8 | (0.5, 1.4) |
At-risk of energy deficiency,% | -- | -- | -- | 2823 | 3.9 | (3.1, 4.9) |
Normal,% | -- | -- | -- | 2823 | 41.9 | (39.4, 44.4) |
Overweight,% | -- | -- | -- | 2823 | 29.0 | (27.0, 31.0) |
Obese,% | -- | -- | -- | 2823 | 24.2 | (22.1, 26.4) |
Characteristic | Number of Children Tested | Anemia % a,b (95% CI) c | Chi-Square p-Value d |
---|---|---|---|
Age group (in months) | |||
6–11 | 87 | 40.0 (29.2, 51.8) | <0.001 |
12–23 | 209 | 34.8 (27.7, 42.7) | |
24–35 | 244 | 23.8 (17.7, 31.2) | |
36–47 | 285 | 20.6 (15.2, 27.4) | |
48–59 | 286 | 18.2 (13.3, 24.2) | |
Sex | |||
Male | 617 | 28.2 (23.5, 33.4) | <0.05 |
Female | 494 | 20.5 (16.8, 24.8) | |
Residence | |||
Urban | 371 | 21.4 (17.0, 26.7) | 0.080 |
Rural | 738 | 27.3 (23.2, 31.7) | |
Region | |||
Baku | 50 | 14.1 (6.7, 27.4) | 0.347 |
Absheron | 90 | 22.9 (13.3, 36.5) | |
Aran | 182 | 31.5 (24.7, 39.2) | |
Daghligh Shirvan | 119 | 29.8 (21.1, 40.3) | |
Ganja-Gazakh | 113 | 20.9 (15.2, 27.9) | |
Guba-Khachmaz | 122 | 25.6 (16.3, 37.6) | |
Lankaran | 149 | 26.1 (18.1, 35.9) | |
Sheki-Zaqatala | 129 | 29.4 (20.8, 39.8) | |
Yukhari Garabakh | 157 | 20.8 (14.5, 29.1) | |
Wealth Quintile | |||
Lowest | 186 | 31.2 (23.4, 40.1) | 0.424 |
Second | 222 | 23.9 (17.8, 31.4) | |
Middle | 235 | 23.5 (17.6, 30.7) | |
Fourth | 254 | 25.7 (19.5, 33.1) | |
Highest | 211 | 20.9 (14.6, 28.8) | |
Household water source | |||
Unsafe | 219 | 29.5 (23.4, 36.5) | 0.050 |
Safe | 865 | 22.7 (19.2, 26.6) | |
Household sanitation | |||
Inadequate | 300 | 26.4 (20.6, 33.3) | 0.524 |
Adequate | 805 | 24.1 (20.5, 28.1) | |
Household handwashing place has soap and water | |||
Yes | 66 | 23.7 (20.5, 27.4) | 0.053 |
No | 1014 | 36.8 (24.0, 51.8) | |
Mother’s Education | |||
Basic secondary or less | 257 | 31.5 (25.0, 38.7) | 0.079 |
Some or completed secondary | 377 | 26.4 (21.2, 32.4) | |
Higher | 174 | 19.6 (13.2, 28.3) | |
Diarrhea in the past 2 weeks | |||
Yes | 67 | 34.3 (22.7, 48.1) | 0.097 |
No | 1044 | 24.0 (20.8, 27.6) | |
Child had lower respiratory infection | |||
Yes | 63 | 39.8 (25.6, 55.8) | <0.05 |
No | 1036 | 23.8 (20.6, 27.3) | |
Minimum dietary diversity e | |||
Yes | 158 | 36.2 (29.0, 45.2) | 0.647 |
No | 132 | 33.1 (23.7, 44.0) | |
Minimum meal frequency e | |||
Yes | 160 | 37.8 (29.1, 47.3) | 0.789 |
No | 114 | 35.9 (26.4, 46.7) | |
Minimum dietary adequacy e | |||
Yes | 51 | 47.2 (32.0, 63.0) | 0.133 |
No | 234 | 33.7 (26.5, 41.9) | |
Consumption of iron-rich foods e | |||
Yes | 177 | 31.9% (24.5, 40.3) | 0.171 |
No | 107 | 41.6 (30.5, 53.7) | |
Wasting/Overweight | |||
Wasted (WHZ ≤ −2) | 27 | 26.8 (11.9, 49.8) | 0.529 |
Normal (WHZ > −2 to ≤+2) | 900 | 25.3 (21.6, 29.3) | |
Overweight/obese (WHZ > +2) | 142 | 20.5 (14.1, 28.6) | |
Stunting | |||
Yes | 171 | 23.3 (16.9, 31.3) | 0.730 |
No | 909 | 24.7 (21.1, 28.6) | |
Iron status | |||
Deficient (sF < 12 µg/l) | 185 | 46.0 (37.1, 55.1) | <0.001 |
Sufficient (sF ≥ 12 µg/l) | 889 | 20.5 (17.1, 24.3) | |
Vitamin A status | |||
Deficient (RBP < 0.70 μmol/L) | 60 | 27.0 (15.2, 43.3) | 0.692 |
Sufficient (RBP ≥ 0.70 μmol/L) | 1014 | 24.0 (20.7, 27.7) | |
Zinc status | |||
Deficient | 122 | 31.6 (22.6, 42.2) | 0.133 |
Sufficient | 927 | 23.8 (20.5, 27.5) | |
Inflammation | |||
None | 761 | 20.9 (17.5, 24.8) | <0.01 |
CRP and/or AGP elevated | 313 | 31.4 (25.5, 38.1) |
Characteristic | Number of Women Tested | Anemia % a,b (95% CI) c | Chi-Square p-Value d |
---|---|---|---|
Age Group (in years) | |||
15–19 | 371 | 36.5 (30.0, 43.4) | <0.05 |
20–24 | 449 | 46.2 (40.2, 52.2) | |
25–29 | 426 | 41.7 (36.4, 47.3) | |
30–34 | 357 | 36.8 (31.2, 42.8) | |
35–39 | 328 | 32.3 (26.1, 39.1) | |
40–44 | 361 | 35.4 (29.8, 41.4) | |
45–49 | 412 | 35.3 (30.1, 41.8) | |
Residence | |||
Urban | 972 | 43.0 (39.0, 47.0) | 0.001 |
Rural | 1731 | 34.3 (31.3, 37.5) | |
Region | |||
Baku | 184 | 45.5 (39.3, 51.8) | <0.001 |
Absheron | 256 | 36.8 (30.4, 43.8) | |
Aran | 457 | 42.0 (36.5, 47.8) | |
Daghligh Shirvan | 268 | 35.9 (28.9, 43.6) | |
Ganja-Gazakh | 297 | 28.0 (23.6, 32.8) | |
Guba-Khachmaz | 301 | 39.4 (33.3, 45.9) | |
Lankaran | 340 | 29.9 (24.8, 35.4) | |
Shaki-Zaqatala | 318 | 37.8 (32.5, 43.4) | |
Yukhari Garabakh | 283 | 35.5 (28.5, 43.1) | |
Woman Education | |||
Basic secondary or less | 786 | 38.7 (34.1, 43.4) | 0.754 |
Some or completed secondary | 1442 | 37.4 (33.8, 41.1) | |
Higher | 475 | 39.8 (34.1, 45.8) | |
Own agricultural land | |||
Yes | 1477 | 34.1 (30.8, 37.6) | 0.001 |
No | 1211 | 42.0 (38.6, 45.5) | |
Wealth Quintile | |||
Lowest | 477 | 40.0 (34.4, 45.7) | 0.401 |
Second | 542 | 41.7 (35.5, 48.2) | |
Middle | 560 | 34.3 (29.7, 39.3) | |
Fourth | 561 | 38.8 (33.4, 44.4) | |
Highest | 553 | 37.5 (33.0, 42.2) | |
Household water source status | |||
Unsafe | 500 | 33.5 (27.5, 40.1) | 0.119 |
Safe | 2146 | 39.3 (36.6, 42.1) | |
Household sanitation status | |||
Inadequate | 644 | 40.5 (34.9, 46.4) | 0.352 |
Adequate | 2053 | 37.6 (34.9, 40.3) | |
Household handwashing place has soap and water | |||
Yes | 2439 | 37.8 (35.1, 40.5) | 0.753 |
No | 190 | 39.3 (30.6, 48.7) | |
Underweight | |||
Underweight (BMI < 18.5) | 127 | 36.7 (25.8, 49.1) | 0.135 |
Normal (BMI 18.5–24.9) | 1135 | 46.1 (42.3, 49.8) | |
Overweight/obese | |||
Obese (BMI ≥ 30.0) | 658 | 29.6 (25.1, 34.6) | <0.001 |
Overweight (BMI 25.0–29.9) | 778 | 34.6 (30.5, 38.8) | |
Normal (BMI 18.5–24.9) | 1135 | 46.1 (42.3, 49.8) | |
Iron status | |||
Deficient (sF < 12 µg/L) | 929 | 69.8 (65.4, 73.8) | <0.001 |
Sufficient (sF ≥ 12 µg/L) | 1716 | 21.9 (19.3, 24.8) | |
Vitamin A insufficient | |||
Insufficient (RBP < 1.05 μmol/L) | 274 | 59.5 (51.3, 67.3) | <0.001 |
Sufficient (RBP ≥ 1.05 μmol/L) | 2371 | 35.8 (33.1, 38.5) | |
Folate status | |||
Deficient (pF < 10 nmol/L) | 912 | 44.7 (40.1, 49.4) | <0.001 |
Sufficient (pF ≥ 10 nmol/L) | 1668 | 35.2 (32.3, 38.2) | |
B12 status | |||
Deficient (pB12 < 150 pmol/L) | 265 | 36.6 (30.1, 43.6) | 0.455 |
Sufficient (pB12 ≥ 150 pmol/L) | 1070 | 39.6 (35.8, 43.7) | |
Inflammation | |||
None | 1725 | 38.3 (34.9, 41.8) | 0.978 |
CRP and/or AGP elevated | 920 | 38.1 (34.4, 42.2) | |
Currently lactating | |||
Yes | 206 | 43.5 (34.5, 52.9) | 0.346 |
No | 1640 | 39.0 (36.0, 42.2) |
Characteristic | Category | N | Crude (Bivariate Analysis) | Adjusted (Poisson Regression) | Population Attributable Fraction b | ||
---|---|---|---|---|---|---|---|
Relative Risk | 95% CI | Relative Risk | 95% CI | ||||
Children 6–59 months a (N = 1062) | |||||||
Child had LRI | Yes | 63 | 1.6 | (1.1, 2.2) | 1.6 | (1.1, 2.1) | 3.4% |
No | 1036 | referent | - | referent | - | ||
Inflammation | Yes | 313 | 1.3 | (1.1, 1.6) | 1.5 | (1.2, 1.9) | 13.6% |
No | 761 | referent | - | referent | - | ||
Iron status | Deficient | 185 | 2.7 | (2.2, 3.3) | 2.6 | (2.1, 3.1) | 17.6% |
Not deficient | 889 | referent | - | referent | - | ||
Non-pregnant women 15–49 years (N = 2516) | |||||||
Obesity | Obese | 658 | 0.64 | (0.55, 0.73) | 0.74 | (0.65, 0.84) | −7.1% |
Normal | 1128 | referent | - | referent | - | ||
Overweight | Overweight | 780 | 0.75 | (0.67, 0.85) | 0.84 | (0.75, 0.93) | −5.5% |
Normal | 1128 | referent | - | referent | - | ||
Iron status | Deficient | 929 | 3.3 | (3.0, 3.7) | 3.2 | (2.8, 3.6) | 43.2% |
Not deficient | 1718 | referent | - | Referent | - | ||
Vitamin A status | Insufficient | 274 | 1.6 | (1.5, 1.8) | 1.3 | (1.2, 1.4) | 3.7% |
Not insufficient | 2373 | referent | - | referent | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirth, J.P.; Rajabov, T.; Petry, N.; Woodruff, B.A.; Shafique, N.B.; Mustafa, R.; Tyler, V.Q.; Rohner, F. Micronutrient Deficiencies, Over- and Undernutrition, and Their Contribution to Anemia in Azerbaijani Preschool Children and Non-Pregnant Women of Reproductive Age. Nutrients 2018, 10, 1483. https://doi.org/10.3390/nu10101483
Wirth JP, Rajabov T, Petry N, Woodruff BA, Shafique NB, Mustafa R, Tyler VQ, Rohner F. Micronutrient Deficiencies, Over- and Undernutrition, and Their Contribution to Anemia in Azerbaijani Preschool Children and Non-Pregnant Women of Reproductive Age. Nutrients. 2018; 10(10):1483. https://doi.org/10.3390/nu10101483
Chicago/Turabian StyleWirth, James P., Tamerlan Rajabov, Nicolai Petry, Bradley A. Woodruff, Nafisa Binte Shafique, Rashed Mustafa, Vilma Qahoush Tyler, and Fabian Rohner. 2018. "Micronutrient Deficiencies, Over- and Undernutrition, and Their Contribution to Anemia in Azerbaijani Preschool Children and Non-Pregnant Women of Reproductive Age" Nutrients 10, no. 10: 1483. https://doi.org/10.3390/nu10101483
APA StyleWirth, J. P., Rajabov, T., Petry, N., Woodruff, B. A., Shafique, N. B., Mustafa, R., Tyler, V. Q., & Rohner, F. (2018). Micronutrient Deficiencies, Over- and Undernutrition, and Their Contribution to Anemia in Azerbaijani Preschool Children and Non-Pregnant Women of Reproductive Age. Nutrients, 10(10), 1483. https://doi.org/10.3390/nu10101483