Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin
Abstract
:1. Introduction
2. Discussions
2.1. Anatomical Features of the Nasal Cavity
2.2. Neurotropic Viruses Entering the Brain Intranasally
2.3. Development of Substance Delivery to the Brain through Intranasal Administration
2.4. Transepithelial Pathways for Substances
2.4.1. Transcellular Pathway
2.4.2. Paracellular Pathway
2.5. Convective and Bidirectional Flow in the Brain
2.6. Intranasal Insulin Delivery into the Brain
2.6.1. Transepithelial Insulin Delivery Mechanisms through the Transcellular or Paracellular Pathways
2.6.2. Intranasal Insulin Trajectory to the Brain after Crossing the Olfactory Epithelium
2.6.3. Intranasal Administration Using Nanoparticles
2.6.4. Clinical Trials of Intranasal Insulin Administration
2.7. Proposed Promising Methods of Intranasally Administered Drug Delivery into the Brain
2.7.1. Possibility of Intranasal Insulin Conjugates with Low Molecular Agents as Cargo
2.7.2. Design of Intranasal Insulin Conjugates with Low Molecular Agents
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Editorial. Stimulus package. Nat. Med. 2018, 24, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.W.; Gallo, L.; Jadhav, A.; Hawkins, R.; Parker, C.G. The Druggability of Solute Carriers. J. Med. Chem. 2020, 63, 3834–3867. [Google Scholar] [CrossRef]
- Tashima, T. Intriguing possibilities and beneficial aspects of transporter-conscious drug design. Bioorg. Med. Chem. 2015, 23, 4119–4131. [Google Scholar] [CrossRef] [PubMed]
- Tashima, T. Smart Strategies for Therapeutic Agent Delivery into Brain across the Blood–Brain Barrier Using Receptor-Mediated Transcytosis. Chem. Pharm. Bull. 2020, 68, 316–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018, 195, 44–52. [Google Scholar] [CrossRef]
- Tashima, T. Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg. Med. Chem. Lett. 2017, 27, 121–130. [Google Scholar] [CrossRef]
- Tashima, T. Effective cancer therapy based on selective drug delivery into cells acrosstheir membrane using receptor-mediated endocytosis. Bioorg. Med. Chem. Lett. 2018, 28, 3015–3024. [Google Scholar] [CrossRef]
- Berkowicz, D.A.; Trombley, P.Q.; Shepherd, G.M. Evidence for Glutamate as the Olfactory Receptor Cell Neurotransmitter. J. Neurophysiol. 1994, 71, 2557–2561. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 614–628. [Google Scholar] [CrossRef]
- Van Riel, D.; Verdijk, R.; Kuiken, T. The olfactory nerve: A shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 2015, 235, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Bingham, J.; Payne, J.; Rookes, J.; Lowther, S.; Haining, J.; Robinson, R.; Johnson, D.; Middleton, D. Multiple routes of invasion of wild-type Clade 1 highly pathogenic avian influenza H5N1 virus into the central nervous system (CNS) after intranasal exposure in ferrets. Acta Neuropathol. 2012, 124, 505–516. [Google Scholar] [CrossRef]
- Plourde, J.R.; Pyles, J.A.; Layton, R.C.; Vaughan, S.E.; Tipper, J.L. Neurovirulence of H5N1 Infection in Ferrets Is Mediated by Multifocal Replication in Distinct Permissive Neuronal Cell Regions. PLoS ONE 2012, 7, e46605. [Google Scholar] [CrossRef] [Green Version]
- Gizurarson, S. The Effect of Cilia and the Mucociliary Clearance on Successful Drug Delivery. Biol. Pharm. Bull. 2015, 38, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horikawa, I.; Miwa, T.; Kimura, Y.; Donjo, T.; Nagayama, I.; Furukawa, M. Topographical Expression of Nerve Growth Factor Receptors in the Olfactory Pathways of Bulbectomized Mice. Jibirinsho 1995, 88 (Suppl. 85), 58–64. [Google Scholar]
- Ascaño, M.; Richmond, A.; Borden, P.; Kuruvilla, R. Axonal Targeting of Trk Receptors via Transcytosis Regulates Sensitivity to Neurotrophin Responses. J. Neurosci. 2009, 29, 11674–11685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucci, C.; Alifano, P.; Cogli, L. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors. Membrane 2014, 4, 642–677. [Google Scholar] [CrossRef] [Green Version]
- Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm. 2007, 7, 1–24. [Google Scholar] [CrossRef]
- France, M.M.; Turner, J.R. The mucosal barrier at a glance. J. Cell Sci. 2017, 130, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Lochhead, J.J.; Davis, T.P. Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Lochhead, J.J.; Wolak, D.J.; Pizzo, M.E.; Thorne, R.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J. Cereb. Blood Flow Metab. 2015, 35, 371–381. [Google Scholar] [CrossRef]
- Barić, N. Role of perivascular and paravascular drainage of Aβ, iron ions, and waste products from the brain. Glycative Stress Res. 2019, 6, 159–174. [Google Scholar]
- Hadaczek, P.; Yamashita, Y.; Mirek, H.; Tamas, L.; Bohn, M.C.; Noble, C.; Park, J.W.; Bankiewicz, K. The “Perivascular Pump” Driven by Arterial Pulsation is a Powerful Mechanism for the Distribution of Therapeutic Molecules within the Brain. Mol. Ther. 2006, 14, 69–78. [Google Scholar] [CrossRef]
- Mestre, H.; Tithof, J.; Du, T.; Song, W.; Peng, W.; Sweeney, A.M.; Olveda, G.; Thomas, J.H.; Nedergaard, M.; Kelley, D.H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Louveau, A.; Plog, B.A.; Antila, S.; Alitalo, K.; Nedergaard, M.; Kipnis, J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Investig. 2017, 127, 3210–3219. [Google Scholar] [CrossRef] [Green Version]
- Hladky, S.B.; Barrand, M.A. Mechanisms of fluid movement into, through and out of the brain: Evaluation of the evidence. Fluids Barriers 2014, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Mader, S.; Brimberg, L. Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease. Cells 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Gold VA, M.; Duong, F.; Collinson, I. Structure and function of the bacterial Sec translocon (Review). Mol. Membrane Biol. 2007, 24, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Aimé, P.; Hegoburu, C.; Jaillard, T.; Degletagne, C.; Garcia, S.; Messaoudi, B.; Thevenet, M.; Lorsignol, A.; Duchamp, C.; Mouly, A.-M.; et al. A Physiological Increase of Insulin in the Olfactory Bulb Decreases Detection of a Learned Aversive Odor and Abolishes Food Odor-Induced Sniffing Behavior in Rats. PLoS ONE 2012, 7, e51227. [Google Scholar] [CrossRef] [PubMed]
- Rhea, E.M.; Rask-Madsen, C.; Banks, W.A. Insulin transport across the blood‑brain barrier can occur independently of the insulin receptor. J. Physiol. 2018, 596, 4753–4765. [Google Scholar] [CrossRef]
- Azizi, P.M.; Zyla, R.E.; Guan, S.; Wang, C.; Liu, J.; Bolz, S.-S.; Heit, B.; Klip, A.; Lee, W.L. Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Mol. Biol. Cell 2014, 26, 740–750. [Google Scholar] [CrossRef]
- McRoberts, J.A.; Aranda, R.; Riley, N.; Kang, H. Insulin Regulates the Paracellular Permeability of Cultured Intestinal Epithelial Cell Monolayers. J. Clin. Investig. 1990, 85, 1127–1134. [Google Scholar] [CrossRef]
- Shorten, P.R.; McMahon, C.D.; Soboleva, T.K. Insulin Transport within Skeletal Muscle Transverse Tubule Networks. Biophys. J. 2007, 93, 3001–3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirumalasetty, P.P.; Eley, J.G. Permeability enhancing effects of the alkylglycoside, octylglucoside, on insulin permeation across epithelial membrane in vitro. J. Pharm. Pharm. Sci. 2006, 9, 32–39. [Google Scholar]
- Mrsny, R.J. Drug Delivery Enhancement Agents. JP Patent 5,284,17A, 28 September 2017. [Google Scholar]
- Taverner, A.; Dondi, R.; Almansour, K.; Laurent, F.; Owens, S.-E.; Eggleston, I.M.; Fotaki, N.; Mrsny, R.J. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation. J. Control. Release 2015, 210, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Zhang, Z.; Zhang, H.; Li, X.; Yu, Q.; Lin, H.; Yang, W. HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: An in vitro study. BMC Infect. Dis. 2008, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Kamei, N.; Tanaka, M.; Choi, H.; Okada, N.; Ikeda, T.; Itokazu, R.; Takeda-Morishita, M. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse. Mol. Pharm. 2017, 14, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Verdurmen WP, R.; Bovee-Geurts, P.H.; Wadhwani, P.; Ulrich, A.S.; Hällbrink, M.; Van Kuppevelt, T.H.; Roland Brock, R. Preferential Uptake of l-versus d-Amino Acid Cell-Penetrating Peptides in a Cell Type-Dependent Manner. Chem. Biol. 2011, 18, 1000–1010. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.K.; Burns, J.M. Insulin: An Emerging Treatment for Alzheimer’s Disease Dementia? Curr. Neurol. Neurosci. Rep. 2012, 12, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Bedse, G.; Domenico, F.D.; Serviddio, G.; Cassano, T. Aberrant insulin signaling in Alzheimer’s disease: Current knowledge. Front Neurosci. 2015, 9, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renner, D.B.; Svitak, A.L.; Gallus, N.J.; Ericson, M.E.; Frey IIW, H.; Hanson, L.R. Intranasal delivery of insulin via the olfactory nerve pathway. J. Pharm. Pharmacol. 2012, 64, 1709–1714. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Kellohen, K.L.; Ronaldson, P.T.; Davis, T.P. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci. Rep. 2019, 9, 2621. [Google Scholar] [CrossRef] [Green Version]
- Baker, H.; Spencer, R.F. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp. Brain Res. 1986, 63, 461–473. [Google Scholar] [CrossRef]
- Shah, D.; Guo, Y.; Ocando, J.; Shao, J. FITC labeling of human insulin and transport of FITC-insulin conjugates through MDCK cell monolayer. J. Pharm. Anal. 2019, 9, 400–405. [Google Scholar] [CrossRef]
- Salameh, T.S.; Bullock, K.M.; Hujoel, I.A.; Niehoff, M.L.; Wolden-Hanson, T.; Kimc, J.; Morley, J.E.; Farr, S.A.; Banks, W.A. Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition. J. Alzheimers Dis. 2015, 47, 715–728. [Google Scholar] [CrossRef]
- Francis, G.J.; Martinez, J.A.; Liu, W.Q.; Xu, K.; Ayer, A.; Fine, J.; Tuor, U.I.; Glazner, G.; Hanson, L.R.; Frey, W.H.; et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 2008, 131, 3311–3334. [Google Scholar]
- Francis, G.; Martinez, J.; Liu, W.; Nguyen, T.; Ayer, A.; Fine, J.; Zochodne, D.; Hanson, L.R.; Frey IIW, H.; Toth, C. Intranasal Insulin Ameliorates Experimental Diabetic Neuropathy. Diabetes 2009, 58, 934–945. [Google Scholar] [CrossRef] [Green Version]
- Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Guterres, S.S.; Pohlmann, A.R.; Nicoli, S. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Gatti, T.H.; Eloy, J.O.; Ferreira LM, B.; da Silva, I.C.; Pavan, F.R.; Gremião MP, D.; Chorilli, M. Insulin-loaded polymeric mucoadhesive nanoparticles: Development, characterization and cytotoxicity evaluation. Braz. J. Pharm. Sci. 2018, 54, e17314. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, S.N.; Rajabnezhad, S.; Zandkarimi, M.; Dahmardeh, S.; Mir, L.; Darbandi, M.A.; Rajabnejad, M.R. Mucoadhesive Microspheres of Chitosan and Polyvinyl Alcohol as A Carrier for Intranasal Delivery of Insulin: In Vitro and In Vivo Studies. MOJ Bioequiv. Availab. 2017, 3, 00030. [Google Scholar]
- Gao, M.; Sun, Y.; Kou, Y.; Shen, X.; Huo, Y.; Liu, C.; Sun, Z.; Zhang, X.; Mao, S. Effect of Glyceryl Monocaprylate-Modified Chitosan on the Intranasal Absorption of Insulin in Rats. J. Pharm. Sci. 2019, 108, 3623–3629. [Google Scholar] [CrossRef] [PubMed]
- El-Mekawy, R.E.; Jassas, R.S. Recent trends in smart and flexible three- dimensional cross-linked polymers: Synthesis of chitosan-ZnO nanocomposite hydrogels for insulin drug delivery. Med. Chem. Commun. 2017, 8, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Ji, Y.; Zhu, X.; Yang, J.; Qian, D.; Mo, X.; Lu, Y. Neuroprotective effect of insulin-loaded chitosan nanoparticles/PLGA-PEG-PLGA hydrogel on diabetic retinopathy in rats. Int. J. Nanomed. 2018, 14, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Katona, G.; Balogh, G.T.; Dargó, G.; Gáspár, R.; Márki, Á.; Ducza, E.; Sztojkov-Ivanov, A.; Tömösi, F.; Kecskeméti, G.; Janáky, T.; et al. Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020, 12, 97. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Duan, X.; Zhang, Y.; Ma, Z.; Li, C.; Zhang, X. Internalization Mechanism of Phenylboronic-Acid-Decorated Nanoplatform for Enhanced Nasal Insulin Delivery. ACS Appl. Bio Mater. 2020, 3, 2132–2139. [Google Scholar] [CrossRef]
- Betzer, O.; Shilo, M.; Motiei, M.; Popovtzer, R. Insulin-coated gold nanoparticles as an effective approach for bypassing the blood-brain barrier. Proc. SPIE 2019, 10891, 108911H. [Google Scholar]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 1 October 2020).
- Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment. Arch. Neurol. 2012, 69, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hao, Y.; Manor, B.; Novak, P.; Milberg, W.; Zhang, J.; Fang, J.; Novak, V. Intranasal Insulin Enhanced Resting-State Functional Connectivity of Hippocampal Regions in Type 2 Diabetes. Diabetes 2015, 64, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Claxton, A.; Baker, L.D.; Hanson, A.; Trittschuh, E.H.; Cholerton, B.; Morgan, A.; Callaghan, M.; Arbuckle, M.; Behl, C.; Craft, S. Long-Acting Intranasal Insulin Detemir Improves Cognition for Adults with Mild Cognitive Impairment or Early-Stage Alzheimer’s Disease Dementia. J. Alzheimer’s Dis. 2015, 44, 897–906. [Google Scholar] [CrossRef] [Green Version]
- Craft, S.; Claxton, A.; Baker, L.D.; Hanson, A.J.; Cholerton, B.; Trittschuh, E.H.; Dahl, D.; Caulder, E.; Neth, B.; Montine, T.J.; et al. Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer’s Disease Biomarkers: A Pilot Clinical Trial. J. Alzheimer’s Dis. 2017, 57, 1325–1334. [Google Scholar] [CrossRef] [Green Version]
- Novak, P.; Maldonado, D.A.P.; Novak, V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: A double-blinded placebo-controlled pilot study. PLoS ONE 2019, 14, e0214364. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Dash, S.; Stahel, P.; Lewis, G.F. Effects of Intranasal Insulin on Triglyceride-Rich Lipoprotein Particle Production in Healthy Men. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1776–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo-Mendez, B.; Trevino, J.A.; McGlinchey, R.; Fortier, C.; Lioutas, V.; Novak, P.; Mantzoros, C.S.; Ngo, L.; Novak, V. Memory advancement by intranasal insulin in type 2 diabetes (MemAID) randomized controlled clinical trial: Design, methods and rationale. Contemp. Clin. Trials 2020, 89, 105934. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Soczynska, J.K.; Woldeyohannes, H.O.; Miranda, A.; Vaccarino, A.; MacQueen, G.; Lewis, G.F.; Kennedy, S.H. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 2012, 14, 697–706. [Google Scholar] [CrossRef]
- Gancheva, S.; Koliaki, C.; Bierwagen, A.; Nowotny, P.; Heni, M.; Fritsche, A.; Häring, H.-U.; Szendroedi, J.; Roden, M. Effects of Intranasal Insulin on Hepatic Fat Accumulation and Energy Metabolism in Humans. Diabetes 2015, 64, 1966–1975. [Google Scholar] [CrossRef] [Green Version]
- Jamison, B.L.; Neef, T.; Goodspeed, A.; Bradley, B.; Baker, R.L.; Miller, S.D.; Haskins, K. Nanoparticles Containing an Insulin-ChgA Hybrid Peptide Protect from Transfer of Autoimmune Diabetes by Shifting the Balance between Effector T cells and Tregs. J. Immunol. 2019, 203, 48–57. [Google Scholar] [CrossRef] [PubMed]
- André, P.; Debray, M.; Scherrmann, J.-M.; Cisternino, S. Clonidine transport at the mouse blood–brain barrier by a new H+ antiporter that interacts with addictive drugs. J. Cereb. Blood Flow Metab. 2009, 29, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, K.; Okura, T.; Kato, S.; Couraud, P.-O.; Schermann, J.-M.; Terasaki, T.; Deguchi, Y. Functional expression of a proton-coupled organic cation (H+/OC) antiporter in human brain capillary endothelial cell line hCMEC/D3, a human blood–brain barrier model. Fluids Barriers CNS 2013, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, S.; Chopra, K.; Sinha, V.R.; Medhi, B. Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Del. 2016, 23, 1434–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, M.A.; Morita, K.; Kawano, H.; Makita, Y.; Hashimoto, M.; Suganami, A.; Tamura, Y.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M. Target protein-oriented isolation of Hes1 dimer inhibitors using protein based methods. Sci. Rep. 2020, 10, 1381. [Google Scholar] [CrossRef]
- Suzuki, T.; Kasuya, Y.; Itoh, Y.; Ota, Y.; Zhan, P.; Asamitsu, K.; Nakagawa, H.; Okamoto, T.; Miyata, N. Identification of Highly Selective and Potent Histone Deacetylase 3 Inhibitors Using Click Chemistry-Based Combinatorial Fragment Assembly. PLoS ONE 2013, 14, e68669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Khan, M.N.A.; Sawada, H.; Imai, E.; Itoh, Y.; Yamatsuta, K.; Tokuda, N.; Takeuchi, J.; Seko, T.; Nakagawa, H.; et al. Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J. Med. Chem. 2012, 55, 5760–5773. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hayashi, I.; Tominari, Y.; Rikimaru, K.; Morohashi, Y.; Kan, T.; Natsugari, H.; Fukuyama, T.; Tomita, T.; Iwatsubo, T. Sulindac Sulfide Is a Noncompetitive -Secretase Inhibitor That Preferentially Reduces A42 Generation. J. Biol. Chem. 2003, 278, 18664–18670. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Joachimiak, A.; Rosner, M.R.; Tang, W.-J. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 2006, 443, 870–874. [Google Scholar] [CrossRef] [Green Version]
- Menting, J.G.; Whittaker, J.; Margetts, M.B.; Whittaker, L.J.; Kong, G.K.-W.; Smith, B.J.; Watson, C.J.; Žáková, L.; Kletvíková, E.; Jiráček, J.; et al. How insulin engages its primary binding site on the insulin receptor. Nature 2013, 493, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brange, J.; Owens, D.R.; Kang, S.; Vølund, A. Monomeric Insulins and Their Experimental and Clinical Implications. Diabetes Care 1990, 13, 923–954. [Google Scholar] [CrossRef]
- Duckworth, W.C.; Bennett, R.G.; Hamel, F.G. Insulin Degradation: Progress and Potential. Endocr. Rev. 1998, 19, 608–624. [Google Scholar]
# | Administration | Condition or Disease | Sponsor | Phase | Study Start Date | Study Completion Date | ClinicalTrials.gov Identifier | Reference |
---|---|---|---|---|---|---|---|---|
(i) | Intranasal Insulin | Mild Cognitive Impairment Alzheimer’s Disease | University of Washington | Phase 2 | June 2006 | December 2011 | NCT00438568 | [59] |
(ii) | Intranasal Insulin | Type 2 Diabetes Mellitus | Beth Israel Deaconess Medical Center | Phase 2 | May 2010 | April 2013 | NCT01206322 | [60] |
(iii) | Intranasal Insulin | Alzheimer’s Disease Mild Cognitive Impairment | University of Washington | Phase 2 | March 2011 | December 2012 | NCT01547169 | [61] |
(iv) | Intranasal Insulin | Alzheimer’s Disease Mild Cognitive Impairment | Wake Forest University Health Sciences | Phase 2 | November 2011 | March 2015 | NCT01595646 | [62] |
(v) | Intranasal Insulin | Parkinson’s Disease Multiple System Atrophy | Peter Novak | Phase 2 | February 2014 | September 2015 | NCT02064166 | [63] |
(vi) | Intranasal Insulin | Hyperlipidemia | University Health Network, Toronto | Phase 2 Phase 3 | April 2016 | April 2017 | NCT03141827 | [64] |
(vii) | Intranasal Insulin | Type 2 Diabetes Mellitus | Beth Israel Deaconess Medical Center | Phase 2 Phase 3 | July 2015 | June 2020 | NCT02415556 | [65] |
(viii) | Intranasal Insulin | Bipolar Disorder | University Health Network, Toronto | Phase 3 | May 2006 | March 2009 | NCT00314314 | [66] |
(ix) | Intranasal Insulin | Diabetes | German Diabetes Center | Phase 4 | August 2011 | June 2018 | NCT01479075 | [67] |
# | Compound | Assay | Additives/ Components | Administration | Cells/ Animals | Results | References |
---|---|---|---|---|---|---|---|
(i) | Insulin | In vitro | - | - | T-84 cell monolayer | Tight junction opening | [32] |
(ii) | Insulin | In vitro | Octylglucoside | - | T-84 cell monolayer | Paracellular permeation enhancement | [34] |
(iii) | Insulin | In vivo | PIP peptide 640 | Intraluminal intestinal injection | Rats | Blood glucose level reduction | [36] |
(iv) | Cy3-labeled insulin | In vivo | PIP peptide 640 | Intraluminal intestinal injection | Rats | Detection in the paracellular route | [36] |
(v) | Insulin | In vivo | l-Penetratin | Intranasal injection | Mice | Cognitive learning enhancement | [38] |
(vi) | Alexa Fluor 568-labeled insulin | In vitro | - | - | Adipose microvascular endothelial cells | Transcytosis | [31] |
(vii) | Alexa Fluor 647-labeled insulin | In vivo | - | Intranasal injection | Mice | Delivery to the olfactory bulb | [42] |
(viii) | FITC-insulin | In vivo | - | Intranasal injection | Rats | Delivery to brain | [43] |
(ix) | 125I-labeled insulin | In vivo | - | Intranasal injection | Mice | Delivery to trigonal nerve and olfactory bulb | [46,47,48] |
(x) | Insulin loaded on nanoparticle | In vitro | Chitosan/dextran sulfate | - | Cellulose acetate membranes | Insulin release from nanoparticle | [50] |
(xi) | Insulin loaded on nanoparticle | In vivo | Chitosan/PVA | Intranasal injection | Rats | Blood glucose level reduction | [51] |
(xii) | Insulin loaded on nanoparticle | In vivo | Chitosan /GMC | Intranasal injection | Rats | Blood glucose level reduction | [52] |
(xiii) | Insulin loaded on nanoparticle | In vivo | Chitosan–ZnO/ hydrogel | Intranasal injection | Rats | Blood glucose level reduction | [53] |
(xiv) | Insulin loaded on nanoparticle | In vivo | PLGA–PEG–PLGA/ hydrogel | Subconjunctival injection | Rats | Retinal cell apoptosis reduction | [54] |
(xv) | Insulin loaded on nanoparticle | In vivo | Dex–PBA | Intranasal injection | Rats | Blood glucose level reduction | [56] |
(xvi) | Insulin loaded on gold nanoparticle | In vivo | Gold | Tail vein injection | Mice | BBB penetration | [57] |
(xvii) | Insulin | In vivo | - | Intranasal injection | Humans | Positive correlations with clinical trials | Table 1 [59,60,61,62,63,64,65,66,67] |
(xviii) | Hybrid insulin peptide loaded on nanoparticle | Ex vivo | Chromogranin A PLG nanoparticle | - | Spleen and pancreas from mice | Re-educative activity to T cells | [68] |
(xix) | Insulin conjugate | In vivo | Galantamine | Intranasal injection | - | Under analysis in Tashima lab | - |
(xx) | Insulin conjugate | In vivo | Hes1 dimer inhibitor | Intranasal injection | - | Under analysis in Tashima lab | [72] |
(xxi) | Insulin conjugate | In vivo | HDAC3 inhibitor | Intranasal injection | - | Under analysis in Tashima lab | [73] |
(xxii) | Insulin conjugate | In vivo | SIRT2 inhibitor | Intranasal injection | - | Under analysis in Tashima lab | [74] |
(xxiii) | Insulin conjugate | In vivo | γ-Secretase inhibitor | Intranasal injection | - | Under analysis in Tashima lab | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tashima, T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 2020, 25, 5188. https://doi.org/10.3390/molecules25215188
Tashima T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules. 2020; 25(21):5188. https://doi.org/10.3390/molecules25215188
Chicago/Turabian StyleTashima, Toshihiko. 2020. "Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin" Molecules 25, no. 21: 5188. https://doi.org/10.3390/molecules25215188
APA StyleTashima, T. (2020). Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules, 25(21), 5188. https://doi.org/10.3390/molecules25215188