Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends
Abstract
:1. Introduction
1.1. Hyperoxia Is Damaging to Developing Organ Systems
1.2. Full Term and Preterm Newborns Have Decreased Antioxidant Capacity
1.3. ROI Are Essential Components of Cell Signaling Pathways in Development
2. Supplemental Oxygen in the Initial Resuscitation of Newborns
2.1. Historical Aspects
2.2. Supplemental Oxygen in Term Infants
2.3. Supplemental Oxygen in Preterm Infants
3. Supplemental Oxygen in the Neonatal ICU
3.1. Historical Perspective
3.2. Targeted Use of Supplemental Oxygen
3.3. Persistent Pulmonary Hypertension of the Newborn
4. Future Directions
4.1. Limits of Pulse Oximetry
4.2. Near-Infrared Spetroscopy
4.3. Novel Therapies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, N.; Johnson, V.A.; McNamara, H.; Montague, I.A.; Jongsma, H.W.; Aumeerally, Z.; Gupta, J.K.; van Oudgaarden, E.; Lilford, R.J.; Miller, D. Fetal Pulse Oximetry: A New Method of Monitoring the Fetus. Aust. N. Z. J. Obstet. Gynaecol. 1994, 34, 428–432. [Google Scholar] [CrossRef]
- Butte, N.F.; Moon, J.K.; Wong, W.W.; Hopkinson, J.M.; Smith, E.O. Energy Requirements from Infancy to Adulthood. Am. J. Clin. Nutr. 1995, 62, 1047S–1052S. [Google Scholar] [CrossRef]
- Vannucci, S.J. Developmental Expression of GLUT1 and GLUT3 Glucose Transporters in Rat Brain. J. Neurochem. 1994, 62, 240–246. [Google Scholar] [CrossRef]
- Ten, V.S.; Stepanova, A.A.; Ratner, V.; Neginskaya, M.; Niatsetskaya, Z.; Sosunov, S.; Starkov, A. Mitochondrial Dysfunction and Permeability Transition in Neonatal Brain and Lung Injuries. Cells 2021, 10, 569. [Google Scholar] [CrossRef]
- Finkel, T. Signal Transduction by Mitochondrial Oxidants. J. Biol. Chem. 2012, 287, 4434–4440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkelhamer, S.K.; Kim, G.A.; Radder, J.E.; Wedgwood, S.; Czech, L.; Steinhorn, R.H.; Schumacker, P.T. Developmental Differences in Hyperoxia-Induced Oxidative Stress and Cellular Responses in the Murine Lung. Free Radic. Biol. Med. 2013, 61, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saugstad, O.D.; Hallman, M.; Abraham, J.L.; Epstein, B.; Cochrane, C.; Gluck, L. Hypoxanthine and Oxygen Induced Lung Injury: A Possible Basic Mechanism of Tissue Damage? Pediatr. Res. 1984, 18, 501–504. [Google Scholar] [CrossRef] [Green Version]
- Ogihara, T.; Hirano, K.; Morinobu, T.; Kim, H.-S.; Hiroi, M.; Ogihara, H.; Tamai, H. Raised Concentrations of Aldehyde Lipid Peroxidation Products in Premature Infants with Chronic Lung Disease. Arch. Dis. Child. Fetal Neonatal. Ed. 1999, 80, F21–F25. [Google Scholar] [CrossRef] [Green Version]
- Warner, B.B.; Stuart, L.A.; Papes, R.A.; Wispé, J.R. Functional and Pathological Effects of Prolonged Hyperoxia in Neonatal Mice. Am. J. Physiol. -Lung Cell. Mol. Physiol. 1998, 275, L110–L117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratner, V.; Starkov, A.; Matsiukevich, D.; Polin, R.A.; Ten, V.S. Mitochondrial Dysfunction Contributes to Alveolar Developmental Arrest in Hyperoxia-Exposed Mice. Am. J. Respir. Cell Mol. Biol. 2009, 40, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Giannone, P.; Bauer, J.; Schanbacher, B.; Reber, K. Effects of Hyperoxia on Postnatal Intestinal Development. Biotech. Histochem. 2007, 82, 17–22. [Google Scholar] [CrossRef]
- Liu, D.Y.; Lou, W.J.; Zhang, D.Y.; Sun, S.Y. ROS Plays a Role in the Neonatal Rat Intestinal Barrier Damages Induced by Hyperoxia. BioMed Res. Int. 2020, 2020, e8819195. [Google Scholar] [CrossRef]
- Hartnett, M.E.; Penn, J.S. Mechanisms and Management of Retinopathy of Prematurity. N. Engl. J. Med. 2012, 367, 2515–2526. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.; Grave, G.D.; Sokoloff, L. Alterations of Local Cerebral Blood Flow Due to Exposure of Newborn Puppies to 80–90 per Cent Oxygen. Eur. Neurol. 1971, 6, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, P.; Du, M.; Chen, K.; Chen, A.; Wang, Y.; Cao, F.; Deng, S.; Xu, Y. Hyperoxia-Induced Immature Brain Injury through the TLR4 Signaling Pathway in Newborn Mice. Brain Res. 2015, 1610, 51–60. [Google Scholar] [CrossRef]
- Du, M.; Tan, Y.; Liu, G.; Liu, L.; Cao, F.; Liu, J.; Jiang, P.; Xu, Y. Effects of the Notch Signalling Pathway on Hyperoxia-Induced Immature Brain Damage in Newborn Mice. Neurosci. Lett. 2017, 653, 220–227. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Chou, Y.-H. Antioxidant Profiles in Full Term and Preterm Neonates. Chang. Gung Med. J. 2005, 28, 846–851. [Google Scholar] [PubMed]
- Heinonen, K.; Mononen, I.; Mononen, T.; Parviainen, M.; Penttilä, I.; Launiala, K. Plasma Vitamin C Levels Are Low in Premature Infants Fed Human Milk. Am. J. Clin. Nutr 1986, 43, 923–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fort, P.; Salas, A.A.; Nicola, T.; Craig, C.M.; Carlo, W.A.; Ambalavanan, N. A Comparison of 3 Vitamin D Dosing Regimens in Extremely Preterm Infants: A Randomized Controlled Trial. J. Pediatr. 2016, 174, 132–138.e1. [Google Scholar] [CrossRef] [Green Version]
- Falciglia, H.S.; Ginn-Pease, M.E.; Falciglia, G.A.; Lubin, A.H.; Frank, D.J.; Chang, W. Vitamin E and Selenium Levels of Premature Infants with Severe Respiratory Distress Syndrome and Bronchopulmonary Dysplasia. J. Pediatr. Perinat Nutr. 1988, 2, 35–49. [Google Scholar] [CrossRef]
- Rosenfeld, W.; Evans, H.; Concepcion, L.; Jhaveri, R.; Schaeffer, H.; Friedman, A. Prevention of Bronchopulmonary Dysplasia by Administration of Bovine Superoxide Dismutase in Preterm Infants with Respiratory Distress Syndrome. J. Pediatr. 1984, 105, 781–785. [Google Scholar] [CrossRef]
- Davis, J.M.; Rosenfeld, W.N.; Richter, S.E.; Parad, R.; Gewolb, I.H.; Spitzer, A.R.; Carlo, W.A.; Couser, R.J.; Price, A.; Flaster, E.; et al. Safety and Pharmacokinetics of Multiple Doses of Recombinant Human CuZn Superoxide Dismutase Administered Intratracheally to Premature Neonates with Respiratory Distress Syndrome. Pediatrics 1997, 100, 24–30. [Google Scholar] [CrossRef]
- Davis, J.M.; Parad, R.B.; Michele, T.; Allred, E.; Price, A.; Rosenfeld, W. Pulmonary Outcome at 1 Year Corrected Age in Premature Infants Treated at Birth with Recombinant Human CuZn Superoxide Dismutase. Pediatrics 2003, 111, 469–476. [Google Scholar] [CrossRef]
- Suresh, G.; Davis, J.M.; Soll, R. Superoxide Dismutase for Preventing Chronic Lung Disease in Mechanically Ventilated Preterm Infants. Cochrane Database Syst. Rev. 2001, 2001, CD001968. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Gortner, L.; Investigators, N.T. Early Postnatal Additional High-Dose Oral Vitamin A Supplementation versus Placebo for 28 Days for Preventing Bronchopulmonary Dysplasia or Death in Extremely Low Birth Weight Infants. Neonatology 2014, 105, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Gortner, L.; Meyer, S.; Bay, J.; Gortner, L.; Ehrlich, A.; Ruckes, C.; Seidenberg, J.; Muyimbwa, J.; Wieg, C.; et al. Up-Date on the NeoVitaA Trial: Obstacles, Challenges, Perspectives, and Local Experiences. Wien. Med. Wochenschr. 2017, 167, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.E.; Kennedy, K.A.; Stoll, B.J.; Bauer, C.R. Vitamin A Supplementation for Extremely-Low-Birth-Weight Infants. N. Engl. J. Med. 1999, 7. [Google Scholar] [CrossRef] [Green Version]
- Darlow, B.A.; Graham, P.J.; Rojas-Reyes, M.X. Vitamin A Supplementation to Prevent Mortality and Short- and Long-term Morbidity in Very Low Birth Weight Infants. Cochrane Database Syst. Rev. 2016, 2016, CD000501. [Google Scholar] [CrossRef]
- Kiatchoosakun, P.; Jirapradittha, J.; Panthongviriyakul, M.C.; Khampitak, T.; Yongvanit, P.; Boonsiri, P. Vitamin A Supplementation for Prevention of Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Premature Thai Infants: A Randomized Trial. J. Med. Assoc. Thai 2014, 97 (Suppl. S10), S82–S88. [Google Scholar]
- Darlow, B.A.; Buss, H.; McGill, F.; Fletcher, L.; Graham, P.; Winterbourn, C.C. Vitamin C Supplementation in Very Preterm Infants: A Randomised Controlled Trial. Arch. Dis Child. Fetal Neonatal Ed. 2005, 90, F117–F122. [Google Scholar] [CrossRef] [Green Version]
- Brion, L.P.; Bell, E.F.; Raghuveer, T.S. Vitamin E Supplementation for Prevention of Morbidity and Mortality in Preterm Infants. Cochrane Database Syst. Rev. 2003, 2003, CD003665. [Google Scholar] [CrossRef]
- Stone, C.A., Jr.; McEvoy, C.T.; Aschner, J.L.; Kirk, A.; Rosas-Salazar, C.; Cook-Mills, J.M.; Moore, P.E.; Walsh, W.F.; Hartert, T.V. Update on Vitamin E and Its Potential Role in Preventing or Treating Bronchopulmonary Dysplasia. Neonatology 2018, 113, 366–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, J.L.; Milner, R.; Zipursky, A.; Paes, B.; Ling, E.; Gill, G.; Fletcher, B.; Rand, C. Failure of Supplementation with Vitamin E to Prevent Bronchopulmonary Dysplasia in Infants Less than 1500 g Birth Weight. Eur. Respir. J. 1991, 4, 188–190. [Google Scholar] [PubMed]
- Ahola, T.; Lapatto, R.; Raivio, K.O.; Selander, B.; Stigson, L.; Jonsson, B.; Jonsbo, F.; Esberg, G.; Stövring, S.; Kjartansson, S.; et al. N-Acetylcysteine Does Not Prevent Bronchopulmonary Dysplasia in Immature Infants: A Randomized Controlled Trial. J. Pediatr. 2003, 143, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.G.; Bae, Y.S.; Lee, S.-R.; Kwon, J. Hydrogen Peroxide: A Key Messenger That Modulates Protein Phosphorylation Through Cysteine Oxidation. Sci. Signal. 2000, 2000, pe1. [Google Scholar] [CrossRef] [PubMed]
- Salmeen, A.; Andersen, J.N.; Myers, M.P.; Meng, T.-C.; Hinks, J.A.; Tonks, N.K.; Barford, D. Redox Regulation of Protein Tyrosine Phosphatase 1B Involves a Sulphenyl-Amide Intermediate. Nature 2003, 423, 769–773. [Google Scholar] [CrossRef]
- Lee, S.-R.; Kwon, K.-S.; Kim, S.-R.; Rhee, S.G. Reversible Inactivation of Protein-Tyrosine Phosphatase 1B in A431 Cells Stimulated with Epidermal Growth Factor*. J. Biol. Chem. 1998, 273, 15366–15372. [Google Scholar] [CrossRef] [Green Version]
- Oshikawa, J.; Urao, N.; Kim, H.W.; Kaplan, N.; Razvi, M.; McKinney, R.; Poole, L.B.; Fukai, T.; Ushio-Fukai, M. Extracellular SOD-Derived H2O2 Promotes VEGF Signaling in Caveolae/Lipid Rafts and Post-Ischemic Angiogenesis in Mice. PLoS ONE 2010, 5, e10189. [Google Scholar] [CrossRef] [Green Version]
- Nezu, M.; Souma, T.; Yu, L.; Sekine, H.; Takahashi, N.; Wei, A.Z.-S.; Ito, S.; Fukamizu, A.; Zsengeller, Z.K.; Nakamura, T.; et al. Nrf2 Inactivation Enhances Placental Angiogenesis in a Preeclampsia Mouse Model and Improves Maternal and Fetal Outcomes. Sci. Signal. 2017, 10, eaam5711. [Google Scholar] [CrossRef]
- Flagg, P.J. Treatment of Asphyxia in the New-Born: Preliminary Report of the Practical Application of Modern Scientific Methods. J. Am. Med. Assoc. 1928, 91, 788–791. [Google Scholar] [CrossRef]
- Terry, T.L. Extreme Prematurity and Fibroblastic Overgrowth of Persistent Vascular Sheath Behind Each Crystalline Lens: I. Preliminary Report. Am. J. Ophthalmol. 2018, 192, xxviii. [Google Scholar] [CrossRef]
- Owens, W.C.; Owens, E.U. Retrolental Fibroplasia in Premature Infants. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1948, 53, 18–41. [Google Scholar]
- Appelbaum, A. Retrolental Fibroplasia—Blindness in Infants of Low Weight at Birth. Calif. Med. 1952, 77, 259–265. [Google Scholar]
- Kinsey, V.E. Retrolental Fibroplasia; Cooperative Study of Retrolental Fibroplasia and the Use of Oxygen. AMA Arch. Ophthalmol. 1956, 56, 481–543. [Google Scholar] [CrossRef]
- Campbell, K. Intensive Oxygen Therapy as a Possible Cause of Retrolental Fibroplasia; a Clinical Approach. Med. J. Aust. 1951, 2, 48–50. [Google Scholar] [CrossRef]
- Cross, K.W. Cost of preventing retrolental fibroplasia? Lancet 1973, 302, 954–956. [Google Scholar] [CrossRef]
- Lucey, J.F.; Dangman, B. A Reexamination of the Role of Oxygen in Retrolental Fibroplasia. Pediatrics 1984, 73, 82–96. [Google Scholar]
- Klaus, M.; Meyer, B.P. Oxygen Therapy for the Newborn. Pediatr. Clin. N. Am. 1966, 13, 731–752. [Google Scholar] [CrossRef]
- Kerber, R.; Ornato, J.; Brown, D.; Chameides, L.; Chandra, N.; Cummins, R.; Hazinski, M.; Melker, R.; Weaver, D. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. JAMA 1992, 268, 2171. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Gluck, L. Plasma Hypoxanthine Levels in Newborn Infants: A Specific Indicator of Hypoxia. J. Perinat Med. 1982, 10, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feet, B.A.; Yu, X.-Q.; Rootwelt, T.; Oyasaeter, S.; Saugstad, O.D. Effects of Hypoxemia and Reoxygenation with 21% or 100% Oxygen in Newborn Piglets: Extracellular Hypoxanthine in Cerebral Cortex and Femoral Muscle. Crit. Care Med. 1997, 25, 1384–1391. [Google Scholar] [CrossRef]
- Rootwelt, T.; Løberg, E.M.; Moen, A.; Øyasæter, S.; Saugstad, O.D. Hypoxemia and Reoxygenation with 21% or 100% Oxygen in Newborn Pigs: Changes in Blood Pressure, Base Deficit, and Hypoxanthine and Brain Morphology. Pediatr. Res. 1992, 32, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saugstad, O.D.; Rootwelt, T.; Aalen, O. Resuscitation of Asphyxiated Newborn Infants with Room Air or Oxygen: An International Controlled Trial: The Resair 2 Study. Pediatrics 1998, 102, e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saugstad, O.D.; Ramji, S.; Irani, S.F.; El-Meneza, S.; Hernandez, E.A.; Vento, M.; Talvik, T.; Solberg, R.; Rootwelt, T.; Aalen, O.O. Resuscitation of Newborn Infants with 21% or 100% Oxygen: Follow-Up at 18 to 24 Months. Pediatrics 2003, 112, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Vento, M.; Asensi, M.; Sastre, J.; Garcıía-Sala, F.; Pallardó, F.V.; Viña, J. Resuscitation with Room Air Instead of 100% Oxygen Prevents Oxidative Stress in Moderately Asphyxiated Term Neonates. Pediatrics 2001, 107, 642–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vento, M.; Asensi, M.; Sastre, J.; García-Sala, F.; Viña, J. Six Years of Experience with the Use of Room Air for the Resuscitation of Asphyxiated Newly Born Term Infants. Biol. Neonate 2001, 79, 261–267. [Google Scholar] [CrossRef]
- Welsford, M.; Nishiyama, C.; Shortt, C.; Isayama, T.; Dawson, J.A.; Weiner, G.; Roehr, C.C.; Wyckoff, M.H.; Rabi, Y. Room Air for Initiating Term Newborn Resuscitation: A Systematic Review with Meta-Analysis. Pediatrics 2019, 143, e20181825. [Google Scholar] [CrossRef] [Green Version]
- Escobedo, M.B.; Aziz, K.; Kapadia, V.S.; Lee, H.C.; Niermeyer, S.; Schmölzer, G.M.; Szyld, E.; Weiner, G.M.; Wyckoff, M.H.; Yamada, N.K.; et al. 2019 American Heart Association Focused Update on Neonatal Resuscitation: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2020, 145, e922–e930. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Wyllie, J.; Aziz, K.; de Almeida, M.F.; Fabres, J.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 2020, 142, S185–S221. [Google Scholar] [CrossRef]
- Lui, K.; Jones, L.J.; Foster, J.P.; Davis, P.G.; Ching, S.K.; Oei, J.L.; Osborn, D.A. Lower versus Higher Oxygen Concentrations Titrated to Target Oxygen Saturations during Resuscitation of Preterm Infants at Birth. Cochrane Database Syst. Rev. 2018, 2018, CD010239. [Google Scholar] [CrossRef]
- Oei, J.L.; Saugstad, O.D.; Lui, K.; Wright, I.M.; Smyth, J.P.; Craven, P.; Wang, Y.A.; McMullan, R.; Coates, E.; Ward, M.; et al. Targeted Oxygen in the Resuscitation of Preterm Infants, a Randomized Clinical Trial. Pediatrics 2017, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabi, Y.; Lodha, A.; Soraisham, A.; Singhal, N.; Barrington, K.; Shah, P.S. Outcomes of Preterm Infants Following the Introduction of Room Air Resuscitation. Resuscitation 2015, 96, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Soraisham, A.S.; Rabi, Y.; Shah, P.S.; Singhal, N.; Synnes, A.; Yang, J.; Lee, S.K.; Lodha, A.K. Neurodevelopmental Outcomes of Preterm Infants Resuscitated with Different Oxygen Concentration at Birth. J. Perinatol. 2017, 37, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Thamrin, V.; Saugstad, O.D.; Tarnow-Mordi, W.; Wang, Y.A.; Lui, K.; Wright, I.M.; De Waal, K.; Travadi, J.; Smyth, J.P.; Craven, P.; et al. Preterm Infant Outcomes after Randomization to Initial Resuscitation with FiO2 0.21 or 1.0. J. Pediatr. 2018, 201, 55–61.e1. [Google Scholar] [CrossRef]
- Kapadia, V.; Oei, J.L.; Finer, N.; Rich, W.; Rabi, Y.; Wright, I.M.; Rook, D.; Vermeulen, M.J.; Tarnow-Mordi, W.O.; Smyth, J.P.; et al. Outcomes of Delivery Room Resuscitation of Bradycardic Preterm Infants: A Retrospective Cohort Study of Randomised Trials of High vs. Low Initial Oxygen Concentration and an Individual Patient Data Analysis. Resuscitation 2021, 167, 209–217. [Google Scholar] [CrossRef]
- Greenspan, J.S.; Goldsmith, J.P. Oxygen Therapy in Preterm Infants: Hitting the Target. Pediatrics 2006, 118, 1740–1741. [Google Scholar] [CrossRef]
- Silverman, W.A. Oxygen Therapy and Retrolental Fibroplasia. Am. J. Public Health Nations Health 1968, 58, 2009–2011. [Google Scholar] [CrossRef]
- Askie, L.M.; Henderson-Smart, D.J.; Ko, H. Restricted versus Liberal Oxygen Exposure for Preventing Morbidity and Mortality in Preterm or Low Birth Weight Infants. Cochrane Database Syst. Rev. 2009, 2009, CD001077. [Google Scholar] [CrossRef]
- Askie, L.M.; Darlow, B.A.; Finer, N.; Schmidt, B.; Stenson, B.; Tarnow-Mordi, W.; Davis, P.G.; Carlo, W.A.; Brocklehurst, P.; Davies, L.C.; et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-Analysis Collaboration. JAMA 2018, 319, 2190–2201. [Google Scholar] [CrossRef]
- Robertson, A.F. Reflections on Errors in Neonatology: I. The “Hands-Off” Years, 1920 to 1950. J. Perinatol. 2003, 23, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Saugstad, O.D. Oxygenation of the Immature Infant: A Commentary and Recommendations for Oxygen Saturation Targets and Alarm Limits. Neonatology 2018, 114, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Lanman, J.T.; Guy, L.P.; Dancis, J. Retrolental Fibroplasia and Oxygen Therapy. J. Am. Med. Assoc. 1954, 155, 223–226. [Google Scholar] [CrossRef]
- Patz, A. Oxygen Studies in Retrolental Fibroplasia*: IV. Clinical and Experimental Observations the First Edward L. Holmes Memorial Lecture. Am. J. Ophthalmol. 1954, 38, 291–308. [Google Scholar] [CrossRef]
- Patz, A. The Role of Oxygen in Retrolental Fibroplasia. Sinai Hosp. J. 1954, 3, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- STOP-ROP Multicenter Study Group. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy of Prematurity (STOP-ROP), A Randomized, Controlled Trial. I: Primary Outcomes. Pediatrics 2000, 105, 295–310. [Google Scholar] [CrossRef] [PubMed]
- SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network; Carlo, W.A.; Finer, N.N.; Walsh, M.C.; Rich, W.; Gantz, M.G.; Laptook, A.R.; Yoder, B.A.; Faix, R.G.; Das, A.; et al. Target Ranges of Oxygen Saturation in Extremely Preterm Infants. N. Engl. J. Med. 2010, 362, 1959–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BOOST II United Kingdom Collaborative Group; BOOST II Australia Collaborative Group; BOOST II New Zealand Collaborative Group; Stenson, B.J.; Tarnow-Mordi, W.O.; Darlow, B.A.; Simes, J.; Juszczak, E.; Askie, L.; Battin, M.; et al. Oxygen Saturation and Outcomes in Preterm Infants. N. Engl. J. Med. 2013, 368, 2094–2104. [Google Scholar] [CrossRef] [Green Version]
- Stenson, B.; Brocklehurst, P.; Tarnow-Mordi, W. Increased 36-Week Survival with High Oxygen Saturation Target in Extremely Preterm Infants. N. Engl. J. Med. 2011, 364, 1680–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BOOST-II Australia and United Kingdom Collaborative Groups; Tarnow-Mordi, W.; Stenson, B.; Kirby, A.; Juszczak, E.; Donoghoe, M.; Deshpande, S.; Morley, C.; King, A.; Doyle, L.W.; et al. Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N. Engl. J. Med. 2016, 374, 749–760. [Google Scholar] [CrossRef]
- Al Hazzani, F.; Khadawardi, E. Effects of Targeting Higher vs. Lower Arterial Oxygen Saturations on Death or Disability in Extremely Preterm Infants: The Canadian Oxygen Trial. J. Clin. Neonatol. 2013, 2, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Saugstad, O.D.; Aune, D. Optimal Oxygenation of Extremely Low Birth Weight Infants: A Meta-Analysis and Systematic Review of the Oxygen Saturation Target Studies. Neonatology 2014, 105, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Manja, V.; Lakshminrusimha, S.; Cook, D.J. Oxygen Saturation Target Range for Extremely Preterm Infants: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2015, 169, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Manja, V.; Saugstad, O.D.; Lakshminrusimha, S. Oxygen Saturation Targets in Preterm Infants and Outcomes at 18-24 Months: A Systematic Review. Pediatrics 2017, 139, e20161609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, B.; Whyte, R.K. Oxygen Saturation Target Ranges and Alarm Settings in the NICU: What Have We Learnt from the Neonatal Oxygenation Prospective Meta-Analysis (NeOProM)? Semin. Fetal. Neonatal Med. 2020, 25, 101080. [Google Scholar] [CrossRef] [PubMed]
- Askie, L.M. Meta-Analysis of Oxygenation Saturation Targeting Trials: Do Infant Subgroups Matter? Clin. Perinatol. 2019, 46, 579–591. [Google Scholar] [CrossRef]
- Kilpatrick, S.J.; American Academy of Pediatrics; American College of Obstetricians and Gynecologists. Guidelines for Perinatal Care; American Academy of Pediatrics; The American College of Obstetricians and Gynecologists: Washington, DC, USA, 2017; ISBN 978-1-61002-088-6. [Google Scholar]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [Green Version]
- Bashinsky, A.L. Retinopathy of Prematurity. North. Carol. Med. J. 2017, 78, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Hartnett, M.E.; Lane, R.H. Effects of Oxygen on the Development and Severity of Retinopathy of Prematurity. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2013, 17, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Sonnie, C.; Worley, S.; Sharma, A.; Howard, D.; Moore, J.; Rodriguez, R.J.; Hoppe, G.; Sears, J.E. Comparison of Biphasic vs. Static Oxygen Saturation Targets Among Infants with Retinopathy of Prematurity. JAMA Ophthalmol. 2019, 137, 417–423. [Google Scholar] [CrossRef]
- Sharma, M.; Mohan, K.R.; Narayan, S.; Chauhan, L. Persistent Pulmonary Hypertension of the Newborn: A Review. Med. J. Armed Forces India 2011, 67, 348–353. [Google Scholar] [CrossRef]
- Rudolph, A.M.; Yuan, S. Response of the Pulmonary Vasculature to Hypoxia and H+ Ion Concentration Changes. J. Clin. Investig. 1966, 45, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.; Lakshminrusimha, S. Update on pphn: Mechanisms and treatment. Semin. Perinatol. 2014, 38, 78–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, M.; Chandrasekharan, P.; Gugino, S.F.; Koenigsknecht, C.; Nielsen, L.; Wedgwood, S.; Mathew, B.; Nair, J.; Steinhorn, R.; Lakshminrusimha, S. Optimal Oxygen Targets in Term Lambs with Meconium Aspiration Syndrome and Pulmonary Hypertension. Am. J. Respir Cell Mol. Biol 2020, 63, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Accurso, F.J.; Alpert, B.; Wilkening, R.B.; Petersen, R.G.; Meschia, G. Time-Dependent Response of Fetal Pulmonary Blood Flow to an Increase in Fetal Oxygen Tension. Respir. Physiol. 1986, 63, 43–52. [Google Scholar] [CrossRef]
- Lakshminrusimha, S.; Russell, J.A.; Steinhorn, R.H.; Ryan, R.M.; Gugino, S.F.; Morin, F.C.; Swartz, D.D.; Kumar, V.H. Pulmonary Arterial Contractility in Neonatal Lambs Increases with 100% Oxygen Resuscitation. Pediatr. Res. 2006, 59, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Lakshminrusimha, S.; Swartz, D.D.; Gugino, S.F.; Ma, C.-X.; Wynn, K.A.; Ryan, R.M.; Russell, J.A.; Steinhorn, R.H. Oxygen Concentration and Pulmonary Hemodynamics in Newborn Lambs with Pulmonary Hypertension. Pediatr. Res. 2009, 66, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.-O.; Mythen, M.; Grocott, M. Physiology of Oxygen Transport. BJA Educ. 2016, 16, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Whyte, R.K.; Jangaard, K.A.; Dooley, K.C. From Oxygen Content to Pulse Oximetry: Completing the Picture in the Newborn. Acta Anaesthesiol. Scand. Suppl. 1995, 107, 95–100. [Google Scholar] [CrossRef]
- Wilson, K.; Hawken, S.; Murphy, M.S.Q.; Atkinson, K.M.; Potter, B.K.; Sprague, A.; Walker, M.; Chakraborty, P.; Little, J. Postnatal Prediction of Gestational Age Using Newborn Fetal Hemoglobin Levels. EBioMedicine 2017, 15, 203–209. [Google Scholar] [CrossRef] [Green Version]
- De Halleux, V.; Truttmann, A.; Gagnon, C.; Bard, H. The Effect of Blood Transfusion on the Hemoglobin Oxygen Dissociation Curve of Very Early Preterm Infants during the First Week of Life. Semin. Perinatol. 2002, 26, 411–415. [Google Scholar] [CrossRef]
- Whetsel, K.B. Near-Infrared Spectrophotometry. Appl. Spectrosc. Rev. 1968, 2, 1–67. [Google Scholar] [CrossRef]
- Suzuki, S.; Takasaki, S.; Ozaki, T.; Kobayashi, Y. Tissue Oxygenation Monitor Using NIR Spatially Resolved Spectroscopy. In Proceedings of the Optical Tomography and Spectroscopy of Tissue III, San Jose, CA, USA, 24–28 January 1999; Volume 3597, pp. 582–592. [Google Scholar]
- Watzman, H.M.; Kurth, C.D.; Montenegro, L.M.; Rome, J.; Steven, J.M.; Nicolson, S.C. Arterial and Venous Contributions to Near-Infrared Cerebral Oximetry. Anesthesiology 2000, 93, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.Y.; Alexiou, T.; Samarasinghe, T.; Brodecky, V.; Walker, A.M. Cerebral Arterial and Venous Contributions to Tissue Oxygenation Index Measured Using Spatially Resolved Spectroscopy in Newborn Lambs. Anesthesiology 2010, 113, 1385–1391. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Dullenkopf, A.; Kolarova, A.; Schulz, G.; Frey, B.; Baenziger, O. Near-Infrared Spectroscopic Cerebral Oxygenation Reading in Neonates and Infants Is Associated with Central Venous Oxygen Saturation. Paediatr. Anaesth. 2005, 15, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Greisen, G.; Leung, T.; Wolf, M. Has the Time Come to Use Near-Infrared Spectroscopy as a Routine Clinical Tool in Preterm Infants Undergoing Intensive Care? Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 4440–4451. [Google Scholar] [CrossRef] [Green Version]
- van Bel, F.; Lemmers, P.; Naulaers, G. Monitoring Neonatal Regional Cerebral Oxygen Saturation in Clinical Practice: Value and Pitfalls. Neonatology 2008, 94, 237–244. [Google Scholar] [CrossRef]
- Petrova, A.; Mehta, R. Near-Infrared Spectroscopy in the Detection of Regional Tissue Oxygenation during Hypoxic Events in Preterm Infants Undergoing Critical Care. Pediatr. Crit. Care Med. 2006, 7, 449. [Google Scholar] [CrossRef]
- Edwards, A.D.; Richardson, C.; Cope, M.; Wyatt, J.S.; Delpy, D.T.; Reynolds, E.O.R. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet 1988, 332, 770–771. [Google Scholar] [CrossRef]
- Cimatti, A.G.; Martini, S.; Galletti, S.; Vitali, F.; Aceti, A.; Frabboni, G.; Faldella, G.; Corvaglia, L. Cerebral Oxygenation and Autoregulation in Very Preterm Infants Developing IVH During the Transitional Period: A Pilot Study. Front. Pediatr. 2020, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Baik, N.; Urlesberger, B.; Schwaberger, B.; Schmölzer, G.M.; Avian, A.; Pichler, G. Cerebral Haemorrhage in Preterm Neonates: Does Cerebral Regional Oxygen Saturation during the Immediate Transition Matter? Arch. Dis. Child. Fetal. Neonatal. Ed. 2015, 100, F422–F427. [Google Scholar] [CrossRef]
- Hyttel-Sorensen, S.; Pellicer, A.; Alderliesten, T.; Austin, T.; van Bel, F.; Benders, M.; Claris, O.; Dempsey, E.; Franz, A.R.; Fumagalli, M.; et al. Cerebral near Infrared Spectroscopy Oximetry in Extremely Preterm Infants: Phase II Randomised Clinical Trial. BMJ 2015, 350, g7635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plomgaard, A.M.; Alderliesten, T.; van Bel, F.; Benders, M.; Claris, O.; Cordeiro, M.; Dempsey, E.; Fumagalli, M.; Gluud, C.; Hyttel-Sorensen, S.; et al. No Neurodevelopmental Benefit of Cerebral Oximetry in the First Randomised Trial (SafeBoosC II) in Preterm Infants during the First Days of Life. Acta Paediatr. 2019, 108, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Hyttel-Sorensen, S.; Greisen, G.; Als-Nielsen, B.; Gluud, C. Cerebral Near-Infrared Spectroscopy Monitoring for Prevention of Brain Injury in Very Preterm Infants. Cochrane Database Syst. Rev. 2017, 9, CD011506. [Google Scholar] [CrossRef]
- Mintzer, J.P.; Moore, J.E. Regional Tissue Oxygenation Monitoring in the Neonatal Intensive Care Unit: Evidence for Clinical Strategies and Future Directions. Pediatr Res. 2019, 86, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Chock, V.Y.; Frymoyer, A.; Yeh, C.G.; Van Meurs, K.P. Renal Saturation and Acute Kidney Injury in Neonates with Hypoxic Ischemic Encephalopathy Undergoing Therapeutic Hypothermia. J. Pediatr. 2018, 200, 232–239.e1. [Google Scholar] [CrossRef]
- Ruf, B.; Bonelli, V.; Balling, G.; Hörer, J.; Nagdyman, N.; Braun, S.L.; Ewert, P.; Reiter, K. Intraoperative Renal Near-Infrared Spectroscopy Indicates Developing Acute Kidney Injury in Infants Undergoing Cardiac Surgery with Cardiopulmonary Bypass: A Case–Control Study. Crit. Care 2015, 19, 27. [Google Scholar] [CrossRef] [Green Version]
- Vesoulis, Z.A.; Mintzer, J.P.; Chock, V.Y. Neonatal NIRS Monitoring: Recommendations for Data Capture and Review of Analytics. J. Perinatol. 2021, 41, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Ofman, G.; Tipple, T.E. Antioxidants & Bronchopulmonary Dysplasia: Beating the System or Beating a Dead Horse? Free Radic. Biol. Med. 2019, 142, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Boehme, J.; Le Moan, N.; Kameny, R.J.; Loucks, A.; Johengen, M.J.; Lesneski, A.L.; Gong, W.; Goudy, B.D.; Davis, T.; Tanaka, K.; et al. Preservation of Myocardial Contractility during Acute Hypoxia with OMX-CV, a Novel Oxygen Delivery Biotherapeutic. PLoS Biol. 2018, 16, e2005924. [Google Scholar] [CrossRef]
- Tipple, T.E.; Welty, S.E.; Rogers, L.K.; Hansen, T.N.; Choi, Y.-E.; Kehrer, J.P.; Smith, C.V. Thioredoxin-Related Mechanisms in Hyperoxic Lung Injury in Mice. Am. J. Respir. Cell Mol. Biol. 2007, 37, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wall, S.B.; Ren, C.; Velten, M.; Hill, C.L.; Locy, M.L.; Rogers, L.K.; Tipple, T.E. Thioredoxin Reductase Inhibition Attenuates Neonatal Hyperoxic Lung Injury and Enhances Nuclear Factor E2-Related Factor 2 Activation. Am. J. Respir. Cell Mol. Biol. 2016, 55, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Dunigan, K.; Li, Q.; Li, R.; Locy, M.L.; Wall, S.; Tipple, T.E. The Thioredoxin Reductase Inhibitor Auranofin Induces Heme Oxygenase-1 in Lung Epithelial Cells via Nrf2-Dependent Mechanisms. Am. J. Physiol. -Lung Cell Mol. Physiol. 2018, 315, L545–L552. [Google Scholar] [CrossRef]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.X.; Osuna, C.; Gitto, E. Actions of Melatonin in the Reduction of Oxidative Stress. A Review. J. Biomed. Sci. 2000, 7, 444–458. [Google Scholar] [CrossRef]
- Pan, L.; Fu, J.-H.; Xue, X.-D.; Xu, W.; Zhou, P.; Wei, B. Melatonin Protects against Oxidative Damage in a Neonatal Rat Model of Bronchopulmonary Dysplasia. World J. Pediatr. 2009, 5, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Robertson, N.J.; Martinello, K.; Lingam, I.; Avdic-Belltheus, A.; Meehan, C.; Alonso-Alconada, D.; Ragab, S.; Bainbridge, A.; Sokolska, M.; Tachrount, M.; et al. Melatonin as an Adjunct to Therapeutic Hypothermia in a Piglet Model of Neonatal Encephalopathy: A Translational Study. Neurobiol. Dis. 2019, 121, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Garland, J.S.; Helbling, D.; Dimmock, D.; Mulrooney, N.P.; Simpson, P.M.; Murray, J.C.; Dagle, J.M. Antioxidant Response Genes Sequence Variants and BPD Susceptibility in VLBW Infants. Pediatr. Res. 2015, 77, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathias, M.; Chang, J.; Perez, M.; Saugstad, O. Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends. Antioxidants 2021, 10, 1879. https://doi.org/10.3390/antiox10121879
Mathias M, Chang J, Perez M, Saugstad O. Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends. Antioxidants. 2021; 10(12):1879. https://doi.org/10.3390/antiox10121879
Chicago/Turabian StyleMathias, Maxwell, Jill Chang, Marta Perez, and Ola Saugstad. 2021. "Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends" Antioxidants 10, no. 12: 1879. https://doi.org/10.3390/antiox10121879
APA StyleMathias, M., Chang, J., Perez, M., & Saugstad, O. (2021). Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends. Antioxidants, 10(12), 1879. https://doi.org/10.3390/antiox10121879