Immunomodulatory Effects of Herbal Compounds Quercetin and Curcumin on Cellular and Molecular Functions of Bovine-Milk-Isolated Neutrophils toward Streptococcus agalactiae Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Milk Samples Collection and Milk PMN Isolation
2.2. Bacterial Growth Condition, Fluorescent Labeling, and Opsonization
2.3. Quercetin
2.4. Curcumin
2.5. Viability Detection of Streptococcus agalactiae Treated with Different Concentrations of Quercetin or Curcumin via Agar Gel Diffusion Assay
2.6. In Vitro Cytotoxicity Assay of Different Concentrations of Quercetin/Curcumin on Milk PMNs via MTT Assay
2.7. In Vitro Quercetin or Curcumin Treatment of Isolated Milk PMNs
2.8. Measurement of Intracellular Reactive Oxygen Species (ROS)
2.9. Phagocytosis
2.10. Bacterial Killing (MTT) Assay and Spot Dilution Assay
2.11. Transwell In Vitro Migration Assay
2.12. Quantification and Visualization of Neutrophil Extracellular Trap (NET) Release of Milk PMNs
2.13. Quantitative Real-Time PCR (qPCR)
2.14. Western Blot
2.15. Identification of Major Pathogens in Collected Bovine Milk by PCR
2.16. Principal Component Analysis (PCA)
2.17. Data Analysis
3. Results
3.1. Milk-Isolated Neutrophils and Identification of Bovine Mastitis-Causing Pathogenic Bacteria
3.2. Streptococcus agalactiae Viability after Being Treated with Different Concentrations of Quercetin/Curcumin
3.3. Quercetin/Curcumin Showed No Cytotoxic Effects on Milk-Isolated Neutrophils
3.4. Quercetin/Curcumin Increased Cell Motility toward Streptococcus agalactiae
3.5. Quercetin/Curcumin Mitigated the Level of Intracellular Reactive Oxygen Species (ROS) of Milk-Isolated Neutrophils
3.6. The Process of Internalization and Phagocytosis of S. agalactiae by Milk PMNs Was Increased by the Action of Quercetin or Curcumin
3.7. In Vitro Treatment of Milk PMNs with Either Quercetin or Curcumin Enhanced Bacterial Killing
3.8. The Formation of NETs by Milk PMNs Was Triggered by Quercetin/Curcumin Supplementation
3.9. Patterns of Gene Expression in Milk PMNs Stimulated with S. agalactiae Were Altered by Supplementation of Quercetin/Curcumin
3.10. Quercetin/Curcumin Manipulated Milk PMN Cell Death
3.11. Principal Component Analysis (PCA) Showed a Clear Separation among Control, Quercetin-Treated, and Curcumin-Treated Milk PMNs Based on Effector Functions and Gene Expressions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zadoks, R.N.; Middleton, J.R.; McDougall, S.; Katholm, J.; Schukken, Y.H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia 2011, 16, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Paape, M.; Mehrzad, J.; Zhao, X.; Detilleux, J.; Burvenich, C. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J. Mammary Gland Biol. Neoplasia 2002, 7, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Chuammitri, P.; Amphaiphan, C.; Nojit, P. In vitro modulatory effects of quercetin on bovine neutrophil effector functions. Thai J. Vet. Med. 2015, 45, 63–72. [Google Scholar]
- Srikok, S.; Nambut, S.; Wongsawan, K.; Chuammitri, P. Quercetin promotes the expression of genes involved in phagocytosisin bovine neutrophils. Am. J. Anim. Vet. Sci. 2017, 12, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.M.; Singh, S.; Dubey, S.K.; Misra, K.; Khar, A. Immunomodulatory and therapeutic activity of curcumin. Int. Immunopharmacol. 2011, 11, 331–341. [Google Scholar] [CrossRef] [PubMed]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar]
- Srivastava, N.S.; Srivastava, R.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine 2019, 52, 117–128. [Google Scholar] [CrossRef]
- Nikfarjam, B.A.; Hajiali, F.; Adineh, M.; Nassiri-Asl, M. Anti-inflammatory effects of quercetin and vitexin on activated human peripheral blood neutrophils-The effects of quercetin and vitexin on human neutrophils. J. Pharmacopunct. 2017, 20, 127–131. [Google Scholar]
- Lokesh, K.; Venkataranganna, M.; Raj, G.G.; Patil, H.; Dave, H. Augmentation of antioxidant and iron (III) chelation properties of tertiary mixture of bioactive ligands. J. Trace Elem. Med. Biol. 2018, 45, 114–124. [Google Scholar]
- Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.-A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev. 2018, 17, 125–135. [Google Scholar] [CrossRef]
- Su, C.-C.; Yang, J.-S.; Lin, S.-Y.; Lu, H.-F.; Lin, S.-S.; Chang, Y.-H.; Huang, W.-W.; LI, Y.-C.; Chang, S.-J.; Chung, J.-G. Curcumin inhibits WEHI-3 leukemia cells in BALB/c mice in vivo. In Vivo 2008, 22, 63–68. [Google Scholar] [PubMed]
- Joe, B.; Vijaykumar, M.; Lokesh, B. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food. Sci. Nutr. 2004, 44, 97–111. [Google Scholar] [CrossRef]
- Chuammitri, P.; Srikok, S.; Saipinta, D.; Boonyayatra, S. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils. Vet. World 2017, 10, 403–410. [Google Scholar] [CrossRef]
- Chaisri, W.; Pangprasit, N.; Srithanasuwan, A.; Intanon, M.; Suriyasathaporn, W. Screening antimicrobial properties against mastitis pathogens of turmeric extract after combination with various antiseptics. Thai J. Vet. Med. 2019, 49, 243–248. [Google Scholar]
- Boonlaos, A.; Wechsirisan, W.; Chaibuth, P.; Chupia, V.; Chotinun, S.; Chuammitri, P. Quercetin enhances and modulates the fungal killing efficacy of chicken heterophils through immunological recognition, effector functions, and resolution. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101582. [Google Scholar] [CrossRef] [PubMed]
- Chuammitri, P.; Wongsawan, K.; Pringproa, K.; Thanawongnuwech, R. Interleukin 17 (IL-17) manipulates mouse bone marrow-derived neutrophils in response to acute lung inflammation. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101356. [Google Scholar] [CrossRef]
- Vingataramin, L.; Frost, E.H. A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques 2015, 58, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Hamza, H.K.; Mohammed, G.J. Identification of Streptococcus agalactiae isolated from pregnant women by 16srRNA gene. Int. J. Pharm. Sci. Res. 2019, 10, 1523–1526. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Khan, I.; Abdulmawjood, A.; Lämmler, C. Evaluation of PCR methods for rapid identification and differentiation of Streptococcus uberis and Streptococcus parauberis. J. Clin. Microbiol. 2001, 39, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, R.I.; Lane, J.D.; Albury, S.V.; Niemeyer, D.M. Rapid extraction from and direct identification in clinical samples of methicillin-resistant staphylococci using the PCR. J. Clin. Microbiol. 2000, 38, 3407–3412. [Google Scholar] [CrossRef] [Green Version]
- Tsen, H.; Lin, C.; Chi, W. Development and use of 16S rRNA gene targeted PCR primers for the identification of Escherichia coli cells in water. J. Appl. Microbiol. 1998, 85, 554–560. [Google Scholar] [CrossRef]
- Xu, H.; Sobue, T.; Bertolini, M.; Thompson, A.; Vickerman, M.; Nobile, C.J.; Dongari-Bagtzoglou, A. S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms. Virulence 2017, 8, 1602–1617. [Google Scholar] [CrossRef] [Green Version]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Kumari, A.; Dash, D.; Singh, R. Curcumin inhibits lipopolysaccharide (LPS)-induced endotoxemia and airway inflammation through modulation of sequential release of inflammatory mediators (TNF-α and TGF-β1) in murine model. Inflammopharmacology 2017, 25, 329–341. [Google Scholar] [CrossRef]
- Madhyastha, H.; Halder, S.; Madhyastha, R.; Mohanapriya, A.; Sudhakaran, R.; Sajitha, L.; Banerjee, K.; Bethasiwi, P.; Daima, H.; Navya, P. Surface refined Au Quercetin nanoconjugate stimulates dermal cell migration: Possible implication in wound healing. RSC Adv. 2020, 10, 37683–37694. [Google Scholar]
- Lan, H.; Hong, W.; Fan, P.; Qian, D.; Zhu, J.; Bai, B. Quercetin inhibits cell migration and invasion in human osteosarcoma cells. Cell. Physiol. Biochem. 2017, 43, 553–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashgarian, H.E.; Adamii, V.; Ghorbanzadeh, V.; Chodari, L.; Kamali, F.; Akbari, S.; Dariushnejad, H. Silibinin inhibit cell migration through downregulation of RAC1 gene expression in highly metastatic breast cancer cell line. Drug Res. 2020, 70, 478–483. [Google Scholar] [CrossRef]
- Humphries-Bickley, T.; Castillo-Pichardo, L.; Hernandez-O’Farrill, E.; Borrero-Garcia, L.D.; Forestier-Roman, I.; Gerena, Y.; Blanco, M.; Rivera-Robles, M.J.; Rodriguez-Medina, J.R.; Cubano, L.A. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol. Cancer Ther. 2017, 16, 805–818. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.B.; Park, C.H.; Kim, J.; Tin, T.D.; Kwak, S.-H. Protective role of curcumin against lipopolysaccharide-induced inflammation and apoptosis in human neutrophil. Anesth. Pain Med. 2020, 15, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Salvioli, S.; Sikora, E.; Cooper, E.; Franceschi, C. Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evid. Based Complement. Alternat. Med. 2007, 4, 181–190. [Google Scholar] [CrossRef]
- Anto, R.J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B.B. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 2002, 23, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Scaffidi, C.; Schmitz, I.; Krammer, P.H.; Peter, M.E. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem. 1999, 274, 1541–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piwocka, K.; Zabłocki, K.; Więckowski, M.R.; Skierski, J.; Feiga, I.; Szopa, J.; Drela, N.; Wojtczak, L.; Sikora, E. A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp. Cell Res. 1999, 249, 299–307. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Disbanchong, P.; Punmanee, W.; Srithanasuwan, A.; Pangprasit, N.; Wongsawan, K.; Suriyasathaporn, W.; Chuammitri, P. Immunomodulatory Effects of Herbal Compounds Quercetin and Curcumin on Cellular and Molecular Functions of Bovine-Milk-Isolated Neutrophils toward Streptococcus agalactiae Infection. Animals 2021, 11, 3286. https://doi.org/10.3390/ani11113286
Disbanchong P, Punmanee W, Srithanasuwan A, Pangprasit N, Wongsawan K, Suriyasathaporn W, Chuammitri P. Immunomodulatory Effects of Herbal Compounds Quercetin and Curcumin on Cellular and Molecular Functions of Bovine-Milk-Isolated Neutrophils toward Streptococcus agalactiae Infection. Animals. 2021; 11(11):3286. https://doi.org/10.3390/ani11113286
Chicago/Turabian StyleDisbanchong, Purichaya, Wichayaporn Punmanee, Anyaphat Srithanasuwan, Noppason Pangprasit, Kanruethai Wongsawan, Witaya Suriyasathaporn, and Phongsakorn Chuammitri. 2021. "Immunomodulatory Effects of Herbal Compounds Quercetin and Curcumin on Cellular and Molecular Functions of Bovine-Milk-Isolated Neutrophils toward Streptococcus agalactiae Infection" Animals 11, no. 11: 3286. https://doi.org/10.3390/ani11113286
APA StyleDisbanchong, P., Punmanee, W., Srithanasuwan, A., Pangprasit, N., Wongsawan, K., Suriyasathaporn, W., & Chuammitri, P. (2021). Immunomodulatory Effects of Herbal Compounds Quercetin and Curcumin on Cellular and Molecular Functions of Bovine-Milk-Isolated Neutrophils toward Streptococcus agalactiae Infection. Animals, 11(11), 3286. https://doi.org/10.3390/ani11113286