Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disease-modifying therapies and infectious risks in multiple sclerosis

Key Points

  • Multiple sclerosis (MS) is a chronic immune-mediated demyelinating and neurodegenerative disease, and the main disease-modifying treatments rely on modulation or suppression of the immune system

  • Current results show that most drugs to treat MS are linked to an increased risk of infection to varying degrees, depending on their mode of action

  • Continuous assessment of infectious risks before, during and after disease-modifying therapy for MS, especially when using intravenous drugs, has increasing clinical relevance

  • Experience with the recently approved oral MS disease-modifying therapies illustrates that even after approval, new treatment-associated infectious risks must be taken into account

  • With an increasing number of treatment-associated infections, accurate diagnostic work-up of patients with MS who present with new neurological symptoms becomes crucial

  • Owing to the possibly serious or even fatal complications of modern MS treatment options, safety data on infections must be collected and evaluated in specific databases following drug approval

Abstract

Immunomodulatory and immunosuppressive treatments for multiple sclerosis (MS) are associated with an increased risk of infection, which makes treatment of this condition challenging in daily clinical practice. Use of the expanding range of available drugs to treat MS requires extensive knowledge of treatment-associated infections, risk-minimizing strategies and approaches to monitoring and treatment of such adverse events. An interdisciplinary approach to evaluate the infectious events associated with available MS treatments has become increasingly relevant. In addition, individual stratification of treatment-related infectious risks is necessary when choosing therapies for patients with MS, as well as during and after therapy. Determination of the individual risk of infection following serial administration of different immunotherapies is also crucial. Here, we review the modes of action of the available MS drugs, and relate this information to the current knowledge of drug-specific infectious risks and risk-minimizing strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lassmann, H. Pathology and disease mechanisms in different stages of multiple sclerosis. J. Neurol. Sci. 333, 1–4 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Lassmann, H. Spinal cord pathology in multiple sclerosis. Lancet Neurol. 14, 348–349 (2015).

    Article  PubMed  Google Scholar 

  5. Zettl, U. K., Stuve, O. & Patejdl, R. Immune-mediated CNS diseases: a review on nosological classification and clinical features. Autoimmun. Rev. 11, 167–173 (2012).

    Article  PubMed  Google Scholar 

  6. Broadley, S. A. et al. Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: an Australian and New Zealand perspective: part 3 treatment practicalities and recommendations. MS Neurology Group of the Australian and New Zealand Association of Neurologists. J. Clin. Neurosci. 21, 1857–1865 (2014).

    Article  PubMed  Google Scholar 

  7. Correale, J. et al. Management of relapsing–remitting multiple sclerosis in Latin America: practical recommendations for treatment optimization. J. Neurol. Sci. 339, 196–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Freedman, M. S. et al. Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can. J. Neurol. Sci. 40, 307–323 (2013).

    Article  PubMed  Google Scholar 

  9. Aktas, O., Kieseier, B. & Hartung, H. P. Neuroprotection, regeneration and immunomodulation: broadening the therapeutic repertoire in multiple sclerosis. Trends Neurosci. 33, 140–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Jeffery, D. R. Recent advances in treating multiple sclerosis: efficacy, risks and place in therapy. Ther. Adv. Chron. Dis. 4, 45–51 (2013).

    Article  CAS  Google Scholar 

  11. Killestein, J., Rudick, R. A. & Polman, C. H. Oral treatment for multiple sclerosis. Lancet Neurol. 10, 1026–1034 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Meuth, S. G., Gobel, K. & Wiendl, H. Immune therapy of multiple sclerosis — future strategies. Curr. Pharm. Des. 18, 4489–4497 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Mulakayala, N., Rao, P., Iqbal, J., Bandichhor, R. & Oruganti, S. Synthesis of novel therapeutic agents for the treatment of multiple sclerosis: a brief overview. Eur. J. Med. Chem. 60, 170–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Abinun, M. An overview of infectious complications in children on new biologic response-modifying agents. Pediatr. Health 4, 509–517 (2010).

    Article  CAS  Google Scholar 

  15. Afif, W. & Loftus Jr, E. V. Safety profile of IBD therapeutics: infectious risks. Gastroenterol. Clin. North Am. 38, 691–709 (2009).

    Article  PubMed  Google Scholar 

  16. Breda, L., Del Torto, M., De Sanctis, S. & Chiarelli, F. Biologics in children's autoimmune disorders: efficacy and safety. Eur. J. Pediatr. 170, 157–167 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Berger, J. R. & Houff, S. Opportunistic infections and other risks with newer multiple sclerosis therapies. Ann. Neurol. 65, 367–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Gold, R. et al. Placebo-controlled Phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Pirko, I. & Rodriguez, M. Pulsed intravenous methylprednisolone therapy in progressive multiple sclerosis: need for a controlled trial. Arch. Neurol. 61, 1148–1149 (2004).

    PubMed  Google Scholar 

  24. Goodkin, D. E. et al. A Phase II study of i.v. methylprednisolone in secondary-progressive multiple sclerosis. Neurology 51, 239–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Chinen, J. & Shearer, W. T. Secondary immunodeficiencies, including HIV infection. J. Allergy Clin. Immunol. 125, S195–S203 (2010).

    Article  PubMed  Google Scholar 

  26. Schweingruber, N., Reichardt, S. D., Luhder, F. & Reichardt, H. M. Mechanisms of glucocorticoids in the control of neuroinflammation. J. Neuroendocrinol. 24, 174–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Rommer, P. S. et al. Patients characteristics influencing the longitudinal utilization of steroids in multiple sclerosis — an observational study. Eur. J. Clin. Invest. 45, 587–593 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Klein, N. C., Go, C. H. & Cunha, B. A. Infections associated with steroid use. Infect. Dis. Clin. North Am. 15, 423–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Dixon, W. G., Suissa, S. & Hudson, M. The association between systemic glucocorticoid therapy and the risk of infection in patients with rheumatoid arthritis: systematic review and meta-analyses. Arthritis Res. Ther. 13, R139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Le Page, E. et al. Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): a randomised, controlled, double-blind, non-inferiority trial. Lancet 386, 974–981 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Stahn, C., Lowenberg, M., Hommes, D. W. & Buttgereit, F. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol. Cell. Endocrinol. 275, 71–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Spies, C. M., Bijlsma, J. W., Burmester, G. R. & Buttgereit, F. Pharmacology of glucocorticoids in rheumatoid arthritis. Curr. Opin. Pharmacol. 10, 302–307 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Weinshenker, B. G. et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann. Neurol. 46, 878–886 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Keegan, M. et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366, 579–582 (2005).

    Article  PubMed  Google Scholar 

  35. Multiple Sclerosis Therapy Consensus Group et al. Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J. Neurol. 255, 1449–1463 (2008).

  36. Ehler, J. et al. Therapeutic plasma exchange in glucocorticosteroid-unresponsive patients with Clinically Isolated Syndrome. Ther. Apher. Dial. 18, 489–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ehler, J. et al. Response to therapeutic plasma exchange as a rescue treatment in clinically isolated syndromes and acute worsening of multiple sclerosis: a retrospective analysis of 90 patients. PLoS ONE 10, e0134583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehmann, H. C., Hartung, H. P., Hetzel, G. R., Stuve, O. & Kieseier, B. C. Plasma exchange in neuroimmunological disorders: Part 1: Rationale and treatment of inflammatory central nervous system disorders. Arch. Neurol. 63, 930–935 (2006).

    Article  PubMed  Google Scholar 

  39. Wing, E. J., Bruns, F. J., Fraley, D. S., Segel, D. P. & Adler, S. Infectious complications with plasmapheresis in rapidly progressive glomerulonephritis. JAMA 244, 2423–2426 (1980).

    Article  CAS  PubMed  Google Scholar 

  40. Mokrzycki, M. H. & Kaplan, A. A. Therapeutic plasma exchange: complications and management. Am. J. Kidney Dis. 23, 817–827 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Haugh, P. J., Levy, C. S., Smith, M. A. & Walshe, D. K. Nosocomial Neisseria meningitidis sepsis as a complication of plasmapheresis. Clin. Infect. Dis. 22, 1116–1117 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Vucic, S. & Davies, L. Safety of plasmapheresis in the treatment of neurological disease. Aust. N. Z. J. Med. 28, 301–305 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kaneko, S. et al. Efficacy and safety of double filtration plasmapheresis in combination with interferon therapy for chronic hepatitis C. Hepatol. Res. 40, 1072–1081 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, J. H. et al. Prognostic factors and complication rates for double-filtration plasmapheresis in patients with Guillain–Barré syndrome. Transfus. Apher. Sci. 52, 78–83 (2015).

    Article  PubMed  Google Scholar 

  45. Yeh, J. H., Chen, W. H. & Chiu, H. C. Complications of double-filtration plasmapheresis. Transfusion 44, 1621–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Rodnitzky, R. L. & Goeken, J. A. Complications of plasma exchange in neurological patients. Arch. Neurol. 39, 350–354 (1982).

    Article  CAS  PubMed  Google Scholar 

  47. Bouget, J., Chevret, S., Chastang, C. & Raphael, J. C. Plasma exchange morbidity in Guillain–Barré syndrome: results from the French prospective, randomized, multicenter study. The French Cooperative Group. Crit. Care Med. 21, 651–658 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Boucher, C. A., de Gans, J., van Oers, R., Danner, S. & Goudsmit, J. Transmission of HIV and AIDS by plasmapheresis for Guillain–Barré syndrome. Clin. Neurol. Neurosurg. 90, 235–236 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. [No authors listed.] Interferon beta-1b is effective in relapsing–remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43, 655–661 (1993).

  50. Ebers, C. G. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 352, 1498–1504 (1998).

    Article  CAS  Google Scholar 

  51. Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann. Neurol. 39, 285–294 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Calabresi, P. A. et al. Pegylated interferon β-1a for relapsing–remitting multiple sclerosis (ADVANCE): a randomised, Phase 3, double-blind study. Lancet Neurol. 13, 657–665 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Kieseier, B. C. et al. Peginterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. Mult. Scler. 21, 1025–1035 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Lehmann, H. C., Kruger, K., Fink, G. R. & Schroeter, M. Progressive multifocal leukoencephalopathy after interferon beta-1a monotherapy. J. Neurol. 262, 771–773 (2015).

    Article  PubMed  Google Scholar 

  55. McGlasson, S., Jury, A., Jackson, A. & Hunt, D. Type I interferon dysregulation and neurological disease. Nat. Rev. Neurol. 11, 515–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing–remitting multiple sclerosis: results of a Phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–1276 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Khan, O., Rieckmann, P., Boyko, A., Selmaj, K. & Zivadinov, R. Three times weekly glatiramer acetate in relapsing–remitting multiple sclerosis. Ann. Neurol. 73, 705–713 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. US Food and Drug Administration. Full prescribing information for copaxone (glatiramer acetate). FDA.gov[online], (2009).

  59. Aktas, O., Kury, P., Kieseier, B. & Hartung, H. P. Fingolimod is a potential novel therapy for multiple sclerosis. Nat. Rev. Neurol. 6, 373–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Kappos, L. et al. Fingolimod in relapsing multiple sclerosis: an integrated analysis of safety findings. Mult. Scler. Relat. Disord. 3, 494–504 (2014).

    Article  PubMed  Google Scholar 

  61. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Arvin, A. M. et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMANeurol. 72, 31–39 (2015).

    Google Scholar 

  63. Winkelmann, A., Loebermann, M., Reisinger, E. C., Hartung, H. P. & Zettl, U. K. Fingolimod treatment for multiple sclerosis patients. What do we do with varicella? Ann. Neurol. 70, 673–674; author reply 674 (2011).

    Article  PubMed  Google Scholar 

  64. Issa, N. P. & Hentati, A. VZV encephalitis that developed in an immunized patient during fingolimod therapy. Neurology 84, 99–100 (2015).

    Article  PubMed  Google Scholar 

  65. Pfender, N., Jelcic, I., Linnebank, M., Schwarz, U. & Martin, R. Reactivation of herpesvirus under fingolimod: a case of severe herpes simplex encephalitis. Neurology 84, 2377–2378 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huang, D. Disseminated cryptococcosis in a patient with multiple sclerosis treated with fingolimod. Neurology 85, 1001–1003 (2015).

    Article  PubMed  Google Scholar 

  67. Achtnichts, L., Obreja, O., Conen, A., Fux, C. A. & Nedeltchev, K. Cryptococcal meningoencephalitis in a patient with multiple sclerosis treated with fingolimod. JAMA Neurol. 72, 1203–1205 (2015).

    Article  PubMed  Google Scholar 

  68. Forrestel, A. K., Modi, B. G., Longworth, S., Wilck, M. B. & Micheletti, R. G. Primary cutaneous cryptococcus in a patient with multiple sclerosis treated with fingolimod. JAMA Neurol. http://dx.doi.org/10.1001/jamaneurol.2015.4259, (2016).

  69. Wollebo, H. S., White, M. K., Gordon, J., Berger, J. R. & Khalili, K. Persistence and pathogenesis of the neurotropic polyomavirus JC. Ann. Neurol. 77, 560–570 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. [No authors listed.] Dear Doctor letter (rote-hand-brief) on Gilenya® (fingolimod): first reported case of progressive multifocal leukoencephalopathy (PML). Federal Institute for Drugs and Medical Devices [online], (in German) (2015).

  71. [No authors listed.] Fingolimod. Kompetenznetz Multiple Sklerose [online], (in German) (2015).

  72. Fox, R. J. et al. Placebo-controlled Phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. [No authors listed.] Tecfidera. European Medicines Agency [online], (2013).

  74. US Food and Drug Administration. FDA approves new multiple sclerosis treatment: Tecfidera. FDA.gov[online], (2013).

  75. Khatri, B. O. et al. The effect of dimethyl fumarate (Tecfidera) on lymphocyte counts: a potential contributor to progressive multifocal leukoencephalopathy risk. Mult. Scler. Relat. Disord. 4, 377–379 (2015).

    Article  PubMed  Google Scholar 

  76. Spencer, C. M., Crabtree-Hartman, E. C., Lehmann-Horn, K., Cree, B. A. & Zamvil, S. S. Reduction of CD8+ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurol. Neuroimmunol. Neuroinflamm. 2, e76 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rosenkranz, T., Novas, M. & Terborg, C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N. Engl. J. Med. 372, 1476–1478 (2015).

    Article  PubMed  Google Scholar 

  78. [No authors listed.] Tecfidera® (dimethyl fumarate): new measures to minimise the risk of PML — enhanced monitoring and stopping rules. Biogen [online], (2015).

  79. [No authors listed.] Updated recommendations to minimise the risk of the rare brain infection PML with Tecfidera. European Medicines Agency [online], (2015).

  80. Ermis, U., Weis, J. & Schulz, J. B. PML in a patient treated with fumaric acid. N. Engl. J. Med. 368, 1657–1658 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. van Oosten, B. W., Killestein, J., Barkhof, F., Polman, C. H. & Wattjes, M. P. PML in a patient treated with dimethyl fumarate from a compounding pharmacy. N. Engl. J. Med. 368, 1658–1659 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Sweetser, M. T., Dawson, K. T. & Bozic, C. Manufacturer's response to case reports of PML. N. Engl. J. Med. 368, 1659–1661 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Stoppe, M. et al. Cerebellar manifestation of PML under fumarate and after efalizumab treatment of psoriasis. J. Neurol. 261, 1021–1024 (2014).

    Article  PubMed  Google Scholar 

  84. Nieuwkamp, D. J. et al. PML in a patient without severe lymphocytopenia receiving dimethyl fumarate. N. Engl. J. Med. 372, 1474–1476 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Bartsch, T. et al. Progressive neurologic dysfunction in a psoriasis patient treated with dimethyl fumarate. Ann. Neurol. 78, 501–514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dammeier, N., Schubert, V., Hauser, T. K., Bornemann, A. & Bischof, F. Case report of a patient with progressive multifocal leukoencephalopathy under treatment with dimethyl fumarate. BMC Neurol. 15, 108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. [No authors listed.] Arzneimittelkommission der deutschen Ärzteschaft – “Aus der UAW-Datenbank”: Reversibles Kaposi-Sarkom unter Fumaderm®-assoziierter Lymphozytopenie. Dtsch. Arztebl. Int. 106, 2380 (in German) (2009).

  88. [No authors listed.] Arzneimittelkommission der Deutschen Ärzteschaft: “Aus der UAW-Datenbank” – Nokardiose bei Lymphopenie durch Fumaderm®. Dtsch. Arztebl. Int. 110, 1220–1221 (in German) (2013).

  89. Reich, K., Hartung, H. P. & Lebwohl, M. More on PML in patients treated with dimethyl fumarate. N. Engl. J. Med. 374, 294–295 (2016).

    Article  PubMed  Google Scholar 

  90. Gheuens, S., Pierone, G., Peeters, P. & Koralnik, I. J. Progressive multifocal leukoencephalopathy in individuals with minimal or occult immunosuppression. J. Neurol. Neurosurg. Psychiatry 81, 247–254 (2010).

    Article  PubMed  Google Scholar 

  91. O'Connor, P. et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365, 1293–1303 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Confavreux, C. et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, Phase 3 trial. Lancet Neurol. 13, 247–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. [No authors listed.] Aubagio. European Medicines Agency [online], (2013).

  94. O'Connor, P. W. et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66, 894–900 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Confavreux, C. et al. Long-term follow-up of a Phase 2 study of oral teriflunomide in relapsing multiple sclerosis: safety and efficacy results up to 8.5 years. Mult. Scler. 18, 1278–1289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miller, A. E. et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, Phase 3 trial. Lancet Neurol. 13, 977–986 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Filippini, G. et al. Immunomodulators and immunosuppressants for multiple sclerosis: a network meta-analysis. Cochrane Database Syst. Rev. 6, CD008933 (2013).

    Google Scholar 

  98. Casetta, I., Iuliano, G. & Filippini, G. Azathioprine for multiple sclerosis. Cochrane Database Syst. Rev. 4, CD003982 (2007).

    Google Scholar 

  99. Yudkin, P. L. et al. Overview of azathioprine treatment in multiple sclerosis. Lancet 338, 1051–1055 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. US Food and Drug Administration. IMURAN (azathioprine). FDA.gov[online], (2014).

  101. Min, M. X., Weinberg, D. I. & McCabe, R. P. Allopurinol enhanced thiopurine treatment for inflammatory bowel disease: safety considerations and guidelines for use. J. Clin. Pharm. Ther. 39, 107–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, S. K. et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet. 46, 1017–1020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rudick, R. A. et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med. 354, 911–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Valenzuela, R. M., Pula, J. H., Garwacki, D., Cotter, J. & Kattah, J. C. Cryptococcal meningitis in a multiple sclerosis patient taking natalizumab. J. Neurol. Sci. 340, 109–111 (2014).

    Article  PubMed  Google Scholar 

  105. US Food and Drug Administration. TYSABRI (natalizumab) injection for intravenous use. FDA.gov[online], (2008).

  106. Warnke, C., Olsson, T. & Hartung, H. P. PML: the dark side of immunotherapy in multiple sclerosis. Trends Pharmacol. Sci. 36, 799–801 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Sorensen, P. S. et al. Risk stratification for progressive multifocal leukoencephalopathy in patients treated with natalizumab. Mult. Scler. 18, 143–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Bloomgren, G. et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366, 1870–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Monaco, M. C. & Major, E. O. Immune system involvement in the pathogenesis of JC virus induced PML: what is learned from studies of patients with underlying diseases and therapies as risk factors. Front. Immunol. 6, 159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Berger, J. R. & Fox, R. J. Reassessing the risk of natalizumab-associated PML. J. Neurovirol. http://dx.doi.org/10.1007/s13365-016-0427-6, (2016).

  112. McGuigan, C. et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J. Neurol. Neurosurg. Psychiatry 87, 117–125 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Warnke, C. et al. Natalizumab and progressive multifocal leukoencephalopathy: what are the causal factors and can it be avoided? Arch. Neurol. 67, 923–930 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Clifford, D. B. et al. Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol. 9, 438–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. [No authors listed.] Updated recommendations to minimise the risk of the rare brain infection PML with Tysabri. European Medicines Agency [online], (2016).

  116. Warnke, C. et al. Cerebrospinal fluid JC virus antibody index for diagnosis of natalizumab-associated progressive multifocal leukoencephalopathy. Ann. Neurol. 76, 792–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wattjes, M. P. & Warnke, C. Guidelines on PML risk stratification and diagnosis in patients with MS treated with natalizumab: so far so good? J. Neurol. Neurosurg. Psychiatry 87, 115 (2015).

    PubMed  Google Scholar 

  118. Plavina, T. et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann. Neurol. 76, 802–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Gheuens, S. et al. Progressive multifocal leukoencephalopathy not observed later than 6 months after natalizumab discontinuation (Poster). Presented at the 67th American Academy of Neurology Annual Meeting (2015).

  120. Fine, A. J., Sorbello, A., Kortepeter, C. & Scarazzini, L. Progressive multifocal leukoencephalopathy after natalizumab discontinuation. Ann. Neurol. 75, 108–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Wattjes, M. P. & Killestein, J. Progressive multifocal leukoencephalopathy after natalizumab discontinuation: few and true? Ann. Neurol. 75, 462 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Cox, A. L. et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur. J. Immunol. 35, 3332–3342 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Jones, J. L. et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Invest. 119, 2052–2061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Thompson, S. A., Jones, J. L., Cox, A. L., Compston, D. A. & Coles, A. J. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J. Clin. Immunol. 30, 99–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. The CAMMS223 Trial Investigators. Alemtuzumab versus interferon beta-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

  126. Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing–remitting multiple sclerosis: a randomised controlled Phase 3 trial. Lancet 380, 1819–1828 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Coles, A. J. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled Phase 3 trial. Lancet 380, 1829–1839 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Menge, T., Stuve, O., Kieseier, B. C. & Hartung, H. P. Alemtuzumab: the advantages and challenges of a novel therapy in MS. Neurology 83, 87–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Hartung, H. P., Aktas, O. & Boyko, A. N. Alemtuzumab: a new therapy for active relapsing–remitting multiple sclerosis. Mult. Scler. 21, 22–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Havrdova, E., Horakova, D. & Kovarova, I. Alemtuzumab in the treatment of multiple sclerosis: key clinical trial results and considerations for use. Ther. Adv. Neurol. Disord. 8, 31–45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Waggoner, J., Martinu, T. & Palmer, S. M. Progressive multifocal leukoencephalopathy following heightened immunosuppression after lung transplant. J. Heart Lung Transplant. 28, 395–398 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Isidoro, L., Pires, P., Rito, L. & Cordeiro, G. Progressive multifocal leukoencephalopathy in a patient with chronic lymphocytic leukaemia treated with alemtuzumab. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2013-201781, (2014).

  133. Tuohy, O. et al. Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. J. Neurol. Neurosurg. Psychiatry 86, 208–215 (2015).

    Article  PubMed  Google Scholar 

  134. Willis, M. D. et al. Alemtuzumab for multiple sclerosis: long term follow-up in a multi-centre cohort. Mult. Scler. http://dx.doi.org/10.1177/1352458515614092, (2015).

  135. Wray, S. A descriptive analysis of infectious adverse events in alemtuzumab treated multiple sclerosis patients. Presented at the 25th Congress of the European Committee for the Treatment and Research In Multiple Sclerosis (2009).

  136. Rau, D. et al. Listeria meningitis complicating alemtuzumab treatment in multiple sclerosis — report of two cases. Int. J. Mol. Sci. 16, 14669–14676 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Committee on Infectious Diseases & Committee on Nutrition & American Academy of Pediatrics. Consumption of raw or unpasteurized milk and milk products by pregnant women and children. Pediatrics 133, 175–179 (2014).

  138. Hartung, H. P. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360, 2018–2025 (2002).

    Article  PubMed  Google Scholar 

  139. US Food and Drug Administration. NOVANTRONE. FDA.gov[online], (2008).

  140. Martinelli Boneschi, F., Vacchi, L., Rovaris, M., Capra, R. & Comi, G. Mitoxantrone for multiple sclerosis. Cochrane Database Syst. Rev. 5, CD002127 (2013).

    Google Scholar 

  141. Lutterotti, A. & Martin, R. Getting specific: monoclonal antibodies in multiple sclerosis. Lancet Neurol. 7, 538–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. He, D. et al. Rituximab for relapsing–remitting multiple sclerosis. Cochrane Database Syst. Rev. 12, CD009130 (2013).

    Google Scholar 

  144. Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Rommer, P. S. et al. Safety and clinical outcomes of rituximab treatment in patients with multiple sclerosis and neuromyelitis optica: experience from a national online registry (GRAID). J. Neuroimmune Pharmacol. 11, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Martin, S. T., Cardwell, S. M., Nailor, M. D. & Gabardi, S. Hepatitis B reactivation and rituximab: a new boxed warning and considerations for solid organ transplantation. Am. J. Transplant. 14, 788–796 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Lanini, S. et al. Risk of infection in patients with lymphoma receiving rituximab: systematic review and meta-analysis. BMC Med. 9, 36 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Carbone, J., del Pozo, N., Gallego, A. & Sarmiento, E. Immunological risk factors for infection after immunosuppressive and biologic therapies. Expert Rev. Anti Infect. Ther. 9, 405–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Dang, L., Dang, X., Koralnik, I. J. & Todd, P. K. JC polyomavirus granule cell neuronopathy in a patient treated with rituximab. JAMA Neurol. 71, 487–489 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Carson, K. R. et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113, 4834–4840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tony, H. P. et al. Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Res. Ther. 13, R75 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Molloy, E. S. & Calabrese, L. H. Progressive multifocal leukoencephalopathy associated with immunosuppressive therapy in rheumatic diseases: evolving role of biologic therapies. Arthritis Rheum. 64, 3043–3051 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. van Vollenhoven, R. F. et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann. Rheum. Dis. 72, 1496–1502 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. US National Library of Science. ClinicalTrials.gov [online], (2016).

  155. US National Library of Science. ClinicalTrials.gov [online], (2016).

  156. US National Library of Science. ClinicalTrials.gov [online], (2016).

  157. Kappos, L. et al. Ocrelizumab in relapsing–remitting multiple sclerosis: a Phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Hauser, S. et al. Efficacy and safety of ocrelizumab in relapsing multiple sklerosis — results of the Phase III double-blind, interferon beta-1a controlled OPERA I and II studies. ECTRIMS Online Library [online], (2015).

  159. Montalban, X. et al. Efficacy and safety of ocrelizumab in primary progressive multiple sclerosis — results of the Phase III, double-blind, placebo controlled ORATORIO study. ECTRIMS Online Library [online], (2015).

  160. Emery, P. et al. Safety with ocrelizumab in rheumatoid arthritis: results from the ocrelizumab Phase III program. PLoS ONE 9, e87379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sorensen, P. S. et al. Safety and efficacy of ofatumumab in relapsing–remitting multiple sclerosis: a Phase 2 study. Neurology 82, 573–581 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Wynn, D. et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a Phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol. 9, 381–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Gold, R. et al. Daclizumab high-yield process in relapsing–remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 381, 2167–2175 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Pfender, N. & Martin, R. Daclizumab (anti-CD25) in multiple sclerosis. Exp. Neurol. 262 Pt A, 44–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Kappos, L. et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 373, 1418–1428 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Loebermann, M. et al. Vaccination against infection in patients with multiple sclerosis. Nat. Rev. Neurol. 8, 143–151 (2011).

    Article  CAS  Google Scholar 

  167. Russo, M. V. & McGavern, D. B. Immune surveillance of the CNS following infection and injury. Trends Immunol. 36, 637–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dong-Si, T. et al. Outcome and survival of asymptomatic PML in natalizumab-treated MS patients. Ann. Clin. Transl. Neurol. 1, 755–764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dong-Si, T. et al. Predictors of survival and functional outcomes in natalizumab-associated progressive multifocal leukoencephalopathy. J. Neurovirol. 21, 637–644 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Baldwin, K. J. & Hogg, J. P. Progressive multifocal leukoencephalopathy in patients with multiple sclerosis. Curr. Opin. Neurol. 26, 318–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Wattjes, M. P. & Barkhof, F. Diagnosis of natalizumab-associated progressive multifocal leukoencephalopathy using MRI. Curr. Opin. Neurol. 27, 260–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Wattjes, M. P. et al. Diagnostic performance of brain MRI in pharmacovigilance of natalizumab-treated MS patients. Mult. Scler. http://dx.doi.org/10.1177/1352458515615225, (2015).

  173. Chahin, S. & Berger, J. R. A risk classification for immunosuppressive treatment-associated progressive multifocal leukoencephalopathy. J. Neurovirol. 21, 623–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Clifford, D. B. Neurological immune reconstitution inflammatory response: riding the tide of immune recovery. Curr. Opin. Neurol. 28, 295–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Brickelmaier, M. et al. Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob. Agents Chemother. 53, 1840–1849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Elphick, G. F. et al. The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 306, 1380–1383 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Cettomai, D. & McArthur, J. C. Mirtazapine use in human immunodeficiency virus-infected patients with progressive multifocal leukoencephalopathy. Arch. Neurol. 66, 255–258 (2009).

    Article  PubMed  Google Scholar 

  178. Schroder, A. et al. Successful management of natalizumab-associated progressive multifocal leukoencephalopathy and immune reconstitution syndrome in a patient with multiple sclerosis. Arch. Neurol. 67, 1391–1394 (2010).

    Article  PubMed  Google Scholar 

  179. Alstadhaug, K. B. et al. Treatment of progressive multifocal leukoencephalopathy with interleukin 7. JAMA Neurol. 71, 1030–1035 (2014).

    Article  PubMed  Google Scholar 

  180. Berger, B. et al. Severe disease reactivation in four patients with relapsing–remitting multiple sclerosis after fingolimod cessation. J. Neuroimmunol. 282, 118–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Buttgereit, F., Burmester, G. R., Straub, R. H., Seibel, M. J. & Zhou, H. Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum. 63, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Buttgereit, F. A fresh look at glucocorticoids. How to use an old ally more effectively. Bull. NYU Hosp. Jt Dis. 70 (Suppl. 1), 26–29 (2012).

    PubMed  Google Scholar 

  183. Lehmann, H. C. & Hartung, H. P. Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. J. Neuroimmunol. 231, 61–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Hu, X. et al. A novel PEGylated interferon beta-1a for multiple sclerosis: safety, pharmacology, and biology. J. Clin. Pharmacol. 52, 798–808 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Caliceti, P. & Veronese, F. M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55, 1261–1277 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Fensterl, V. & Sen, G. C. Interferons and viral infections. Biofactors 35, 14–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Hundeshagen, A. et al. Elevated type I interferon-like activity in a subset of multiple sclerosis patients: molecular basis and clinical relevance. J. Neuroinflamm. 9, 140 (2012).

    Article  CAS  Google Scholar 

  188. Hecker, M. et al. Network analysis of transcriptional regulation in response to intramuscular interferon-beta-1a multiple sclerosis treatment. Pharmacogenom. J. 12, 360 (2012).

    Article  CAS  Google Scholar 

  189. Bongioanni, P., Lombardo, F., Moscato, G., Mosti, S. & Meucci, G. T-cell interferon gamma receptor binding in interferon beta-1b-treated patients with multiple sclerosis. Arch. Neurol. 56, 217–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Noronha, A., Toscas, A. & Jensen, M. A. Interferon beta augments suppressor cell function in multiple sclerosis. Ann. Neurol. 27, 207–210 (1990).

    Article  CAS  PubMed  Google Scholar 

  191. Arnason, B. G. Interferon beta in multiple sclerosis. Clin. Immunol. Immunopathol. 81, 1–11 (1996).

    Article  CAS  PubMed  Google Scholar 

  192. Arnason, B. G. et al. Mechanisms of action of interferon-β in multiple sclerosis. Springer Semin. Immunopathol. 18, 125–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  193. Ozenci, V., Kouwenhoven, M., Huang, Y. M., Kivisakk, P. & Link, H. Multiple sclerosis is associated with an imbalance between tumour necrosis factor-alpha (TNF-α)- and IL-10-secreting blood cells that is corrected by interferon-beta (IFN-β) treatment. Clin. Exp. Immunol. 120, 147–153 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Shapiro, S., Galboiz, Y., Lahat, N., Kinarty, A. & Miller, A. The 'immunological-synapse' at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-β. J. Neuroimmunol. 144, 116–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Yushchenko, M. et al. Interferon-β-1 b decreased matrix metalloproteinase-9 serum levels in primary progressive multiple sclerosis. J. Neurol. 250, 1224–1228 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Boster, A., Bartoszek, M. P., O'Connell, C., Pitt, D. & Racke, M. Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing–remitting multiple sclerosis. Ther. Adv. Neurol. Disord. 4, 319–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ziemssen, T., Kumpfel, T., Klinkert, W. E., Neuhaus, O. & Hohlfeld, R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain 125, 2381–2391 (2002).

    Article  PubMed  Google Scholar 

  198. Hong, J., Li, N., Zhang, X., Zheng, B. & Zhang, J. Z. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc. Natl Acad. Sci. USA 102, 6449–6454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Teitelbaum, D., Milo, R., Arnon, R. & Sela, M. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc. Natl Acad. Sci. USA 89, 137–141 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fridkis-Hareli, M. & Strominger, J. L. Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J. Immunol. 160, 4386–4397 (1998).

    CAS  PubMed  Google Scholar 

  201. O'Sullivan, C. & Dev, K. K. The structure and function of the S1P1 receptor. Trends Pharmacol. Sci. 34, 401–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Cohen, J. A. & Chun, J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann. Neurol. 69, 759–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Chanvillard, C., Jacolik, R. F., Infante-Duarte, C. & Nayak, R. C. The role of natural killer cells in multiple sclerosis and their therapeutic implications. Front. Immunol. 4, 63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Coelho, R. P., Payne, S. G., Bittman, R., Spiegel, S. & Sato-Bigbee, C. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J. Pharmacol. Exp. Ther. 323, 626–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Miron, V. E. et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am. J. Pathol. 176, 2682–2694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kohne, A. et al. Fingolimod impedes Schwann cell-mediated myelination: implications for the treatment of immune neuropathies? Arch. Neurol. 69, 1280–1289 (2012).

    Article  PubMed  Google Scholar 

  209. Mullershausen, F. et al. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J. Neurochem. 102, 1151–1161 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Xie, J. H. et al. Sphingosine-1-phosphate receptor agonism impairs the efficiency of the local immune response by altering trafficking of naive and antigen-activated CD4+ T cells. J. Immunol. 170, 3662–3670 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Gold, R., Linker, R. A. & Stangel, M. Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action. Clin. Immunol. 142, 44–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692 (2011).

    Article  PubMed  Google Scholar 

  213. Scannevin, R. H. et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther. 341, 274–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Fox, R. I. et al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin. Immunol. 93, 198–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  215. Bar-Or, A., Pachner, A., Menguy-Vacheron, F., Kaplan, J. & Wiendl, H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74, 659–674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Elion, G. B. The George Hitchings and Gertrude Elion lecture. Ann. N. Y. Acad. Sci. 685, 400–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  217. Rice, G. P., Hartung, H. P. & Calabresi, P. A. Anti-α4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64, 1336–1342 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Leussink, V. I. et al. Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental autoimmune neuritis. Acta Neuropathol. 103, 131–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Wiendl, H. & Kieseier, B. Multiple sclerosis: reprogramming the immune repertoire with alemtuzumab in MS. Nat. Rev. Neurol. 9, 125–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Xia, M. Q. et al. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem. J. 293, 633–640 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Koeller, J. & Eble, M. Mitoxantrone: a novel anthracycline derivative. Clin. Pharm. 7, 574–581 (1988).

    CAS  PubMed  Google Scholar 

  222. Marriott, J. J. et al. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 74, 1463–1470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Burns, S. A. et al. Mitoxantrone repression of astrocyte activation: relevance to multiple sclerosis. Brain Res. 1473, 236–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fidler, J. M., DeJoy, S. Q. & Gibbons, J. J. Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function. J. Immunol. 137, 727–732 (1986).

    CAS  PubMed  Google Scholar 

  225. Riminton, D. S., Hartung, H. P. & Reddel, S. W. Managing the risks of immunosuppression. Curr. Opin. Neurol. 24, 217–223 (2011).

    Article  PubMed  Google Scholar 

  226. Winkelmann, A., Löbermann, M., Reisinger, E. C. & Zettl, U. K. Infektionen und Infektionsprävention bei Multipler Sklerose. Fragen und Antworten für die klinische Praxis. Nervenheilkunde 33, 883–890 (in German) (2014).

    Article  Google Scholar 

  227. Winkelmann, A., Löbermann, M., Reisinger, E. C. & Zettl, U. K. Multiple sclerosis and infections. Akt. Neurol. 38, 339–350 (in German) (2011).

    Article  Google Scholar 

  228. Frau, J. et al. Role of interferon-beta in Mycobacterium avium subspecies paratuberculosis antibody response in Sardinian MS patients. J. Neurol. Sci. 349, 249–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Chan, H. L., Ren, H., Chow, W. C., Wee, T. & Interferon Beta-1a Hepatitis C Study Group. Randomized trial of interferon beta-1a with or without ribavirin in Asian patients with chronic hepatitis C. Hepatology 46, 315–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  230. Eisenberg, M. et al. Preliminary trial of recombinant fibroblast interferon in chronic hepatitis B virus infection. Antimicrob. Agents Chemother. 29, 122–126 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Mader, E. C. Jr et al. Tumefactive multiple sclerosis and hepatitis C virus 2a/2C infection: dual benefit of long-term interferon beta-1a therapy? J. Neurol. Sci. 349, 239–242 (2015).

    Article  PubMed  Google Scholar 

  232. Rao, H. Y. et al. Liver fibrosis and hepatic stellate cells improvement of chronic hepatitis C patients by interferon-β-1a with or without sustained viral response. Hepatogastroenterology 56, 328–334 (2009).

    CAS  PubMed  Google Scholar 

  233. Tan, F. U., Cetinkaya, H., Erden, E., Ulkatan, S. & Aydin, N. Dual benefit from intramuscular interferon-β treatment in a patient with multiple sclerosis and chronic hepatitis-C virus infection. Hepatogastroenterology 49, 1686–1687 (2002).

    PubMed  Google Scholar 

  234. Khouri, R. et al. IFN-β impairs superoxide-dependent parasite killing in human macrophages: evidence for a deleterious role of SOD1 in cutaneous leishmaniasis. J. Immunol. 182, 2525–2531 (2009).

    Article  CAS  PubMed  Google Scholar 

  235. Maffione, A. B. et al. In vivo effects of recombinant-interferon-β1b treatment on polymorphonuclear cell and monocyte functions and on T-cell-mediated antibacterial activity in patients with relapsing–remitting multiple sclerosis. Immunopharmacol. Immunotoxicol. 22, 1–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  236. Mattner, J. et al. Protection against progressive leishmaniasis by IFN-β. J. Immunol. 172, 7574–7582 (2004).

    Article  CAS  PubMed  Google Scholar 

  237. Olberg, H. K. et al. Immunotherapies influence the influenza vaccination response in multiple sclerosis patients: an explorative study. Mult. Scler. 20, 1074–1080 (2014).

    Article  CAS  PubMed  Google Scholar 

  238. Smith, M. Y. et al. Postmarketing safety profile of subcutaneous interferon beta-1a given 3 times weekly: a retrospective administrative claims analysis. J. Manag. Care Spec. Pharm. 21, 650–660 (2015).

    PubMed  Google Scholar 

  239. US Food and Drug Administration. FDA drug, safety communication: FDA warns about cases of rare brain infection with MS drug Gilenya (fingolimod) in two patients with no prior exposure to immunosuppressant drugs. FDA.gov[online], (2015).

  240. Ermis, U., Weis, J. & Schulz, J. B. Case reports of PML in patients treated for psoriasis. N. Engl. J. Med. 369, 1081 (2013).

    CAS  PubMed  Google Scholar 

  241. Comi, G. et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult. Scler. Relat. Disord. 5, 97–104 (2016).

    Article  PubMed  Google Scholar 

  242. Casetta, I., Iuliano, G. & Filippini, G. Azathioprine for multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 80, 131–132; discussion 132 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Dahdaleh, D., Altmann, D. M., Malik, O. & Nicholas, R. S. Breathlessness, night sweats, and weight loss on natalizumab. Lancet 380, 726–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  244. de Masson, A. et al. Cavitary pulmonary disease in a patient treated with natalizumab. Presse Med. 43, 1009–1012 (2014).

    Article  PubMed  Google Scholar 

  245. Hradilek, P., Zeman, D., Tudik, I., Zapletalova, O. & Ulmann, V. Asymptomatic lung disease caused by Mycobacterium kansasii as an opportunistic infection in a patient treated with natalizumab for relapsing–remitting multiple sclerosis. Mult. Scler. 20, 639–640 (2014).

    Article  PubMed  Google Scholar 

  246. Kohlmann, R. et al. Serological evidence of increased susceptibility to varicella-zoster virus reactivation or reinfection in natalizumab-treated patients with multiple sclerosis. Mult. Scler. 21, 1823–1832 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Kobeleva, X. et al. Varicella zoster-associated retinal and central nervous system vasculitis in a patient with multiple sclerosis treated with natalizumab. J. Neuroinflamm. 11, 19 (2014).

    Article  CAS  Google Scholar 

  248. Kwiatkowski, A. et al. Herpes encephalitis during natalizumab treatment in multiple sclerosis. Mult. Scler. 18, 909–911 (2012).

    Article  CAS  PubMed  Google Scholar 

  249. Sharma, K., Ballham, S. A., Inglis, K. E., Renowden, S. & Cottrell, D. A. Does natalizumab treatment increase the risk of herpes simplex encephalitis in multiple sclerosis? Case and discussion. Mult. Scler. Relat. Disord. 2, 385–387 (2013).

    Article  PubMed  Google Scholar 

  250. Shenoy, E. S., Mylonakis, E., Hurtado, R. M. & Venna, N. Natalizumab and HSV meningitis. J. Neurovirol. 17, 288–290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Fine, A. J., Sorbello, A., Kortepeter, C. & Scarazzini, L. Central nervous system herpes simplex and varicella zoster virus infections in natalizumab-treated patients. Clin. Infect. Dis. 57, 849–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  252. Fragoso, Y. D., Brooks, J. B., Gomes, S., de Oliveira, F. T. & da Gama, P. D. Report of three cases of herpes zoster during treatment with natalizumab. CNS Neurosci. Ther. 19, 280–281 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Gutwinski, S. et al. Severe cutaneous Candida infection during natalizumab therapy in multiple sclerosis. Neurology 74, 521–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Zecca, C., Nessi, F., Bernasconi, E. & Gobbi, C. Ocular toxoplasmosis during natalizumab treatment. Neurology 73, 1418–1419 (2009).

    Article  PubMed  Google Scholar 

  255. Desoubeaux, G. et al. Two cases of opportunistic parasite infections in patients receiving alemtuzumab. J. Clin. Pathol. 65, 92–95 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.W. and M.L. contributed equally to the manuscript. A.W. and M.L. drafted and wrote the manuscript, and all authors collected and reviewed literature. U.K.Z. and H.-P.H. drafted and critically revised the manuscript.

Corresponding author

Correspondence to Hans-Peter Hartung.

Ethics declarations

Competing interests

A.W. has received fees for speaking, consulting, serving on advisory boards and conducting clinical trials from Alexion, Bayer Healthcare, Biogen, Genzyme, Merck Serono, Novartis, Octapharma, Roche, Sanofi and Teva, with the approval of the Director of the University of Rostock Medical School. M.L. has received fees for speaking, consulting and conducting clinical trials from Abbvie, Astellas, GlaxoSmithKline, Gilead, Novartis Vaccines, Janssen and Roche, with the approval of the Director of the University of Rostock Medical School. E.C.R. has received speaker's honoraria, travel expense compensation and fees for conducting clinical trials from Activaero, Bayer, GlaxoSmithKline, Novartis Vaccines, Roche Pharma, and Sanofi Pasteur MSD, with approval from the Rector of the University of Rostock. H.-P.H. has received fees for consulting, speaking and serving on steering committees from Biogen, GeNeuro, Genzyme, Merck Serono, Novartis, Octapharma, Receptos, Roche, Sanofi and Teva, with approval from the Rector of Heinrich Heine University. U.K.Z has received fees for speaking, consulting, serving on advisory boards and conducting clinical trials from Bayer Healthcare, Biogen, Merck Serono, Novartis, Sanofi and Teva, with the approval of the Director of the University of Rostock Medical School.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkelmann, A., Loebermann, M., Reisinger, E. et al. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12, 217–233 (2016). https://doi.org/10.1038/nrneurol.2016.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.21

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing