Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Emerging pathogenic links between microbiota and the gut–lung axis

Key Points

  • The gastrointestinal tract (GIT) and respiratory tract, although separate organs, are part of a shared mucosal immune system termed the gut–lung axis.

  • The microbiota of the GIT and the respiratory tract are involved in the gut–lung axis, influencing immune responses both locally and at distant sites.

  • Current research has identified specific bacterial taxa, their components and metabolites that can influence host immunity.

  • With greater knowledge of the gut–lung axis and microbial influences of immunity, advances have been made in understanding the role of the microbiota in respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD) and respiratory infection.

  • This newfound understanding has created several possible therapeutic strategies for the treatment or prevention of acute and chronic respiratory diseases. However, several technical challenges and unanswered questions remain.

Abstract

The microbiota is vital for the development of the immune system and homeostasis. Changes in microbial composition and function, termed dysbiosis, in the respiratory tract and the gut have recently been linked to alterations in immune responses and to disease development in the lungs. In this Opinion article, we review the microbial species that are usually found in healthy gastrointestinal and respiratory tracts, their dysbiosis in disease and interactions with the gut–lung axis. Although the gut–lung axis is only beginning to be understood, emerging evidence indicates that there is potential for manipulation of the gut microbiota in the treatment of lung diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of gut–lung crosstalk in health and disease.
Figure 2: Structural and functional similarities and differences between the gut and lung.
Figure 3: Immune system programming by microbiota.

Similar content being viewed by others

References

  1. Roussos, A., Koursarakos, P., Patsopoulos, D., Gerogianni, I. & Philippou, N. Increased prevalence of irritable bowel syndrome in patients with bronchial asthma. Respir. Med. 97, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Rutten, E. P., Lenaerts, K., Buurman, W. A. & Wouters, E. F. Disturbed intestinal integrity in patients with COPD: effects of activities of daily living. Chest 145, 245–252 (2014).

    Article  PubMed  Google Scholar 

  3. Yazar, A. et al. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am. J. Gastroenterol. 96, 1511–1516 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Keely, S., Talley, N. J. & Hansbro, P. M. Pulmonary–intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 5, 7–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Vieira, W. A. & Pretorius, E. The impact of asthma on the gastrointestinal tract (GIT). J. Asthma Allergy 3, 123–130 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Wymore Brand, M. et al. The altered Schaedler flora: continued applications of a defined murine microbial community. ILAR J. 56, 169–178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Asmakh, M. & Zadjali, F. Use of germ-free animal models in microbiota-related research. J. Microbiol. Biotechnol. 25, 1583–1588 (2015).

    Article  PubMed  Google Scholar 

  8. Quercia, S. et al. From lifetime to evolution: timescales of human gut microbiota adaptation. Front. Microbiol. 5, 587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Noverr, M. C., Falkowski, N. R., McDonald, R. A., McKenzie, A. N. & Huffnagle, G. B. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect. Immun. 73, 30–38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Russell, S. L. et al. Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. J. Allergy Clin. Immunol. 135, 100–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Arrieta, M. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Aguirre de Carcer, D. et al. Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon. ISME J. 5, 801–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morris, A. et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bassis, C. M. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 6, e00037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a TH17 phenotype. Nat. Microbiol. 1, 16031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rogers, G. B. et al. Assessing the diagnostic importance of nonviable bacterial cells in respiratory infections. Diagn. Microbiol. Infect. Dis. 62, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Shanahan, E. R., Zhong, L., Talley, N. J., Morrison, M. & Holtmann, G. Characterisation of the gastrointestinal mucosa-associated microbiota: a novel technique to prevent cross-contamination during endoscopic procedures. Aliment. Pharmacol. Ther. 43, 1186–1196 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Pope, P. B. et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 333, 646–648 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Ratner, A. J., Lysenko, E. S., Paul, M. N. & Weiser, J. N. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc. Natl Acad. Sci. USA 102, 3429–3434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Preston, J. A. et al. Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. Vaccine 25, 8154–8162 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Thorburn, A. N., Foster, P. S., Gibson, P. G. & Hansbro, P. M. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells. J. Immunol. 188, 4611–4620 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Thorburn, A. N. & Hansbro, P. M. Harnessing regulatory T cells to suppress asthma: from potential to therapy. Am. J. Respir. Cell Mol. Biol. 43, 511–519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Preston, J. A. et al. Streptococcus pneumoniae infection suppresses allergic airways disease by inducing regulatory T-cells. Eur. Respir. J. 37, 53–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Bernasconi, E. et al. Airway microbiota determines innate cell inflammatory or tissue remodeling profiles in lung transplantation. Am. J. Respir. Crit. Care Med. http://dx.doi.org/10.1164/rccm.201512-2424OC (2016).

  33. Larsen, J. M. et al. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology 144, 333–342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schuijt, T. J. et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65, 575–583 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Dickson, R. P. & Cox, M. J. The premature invocation of a 'gut–lung axis' may obscure the direct effects of respiratory microbiota on pneumonia susceptibility. Gut http://dx.doi.org/10.1136/gutjnl-2016-311823 (2016).

  36. van Nimwegen, F. A. et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J. Allergy Clin. Immunol. 128, 948–955 (2011).

    Article  PubMed  Google Scholar 

  37. Akay, H. K. et al. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: a prospective study of 0–3 years-old children in Turkey. Anaerobe 28, 98–103 (2014).

    Article  PubMed  Google Scholar 

  38. Marsland, B. J., Trompette, A. & Gollwitzer, E. S. The gut–lung axis in respiratory disease. Ann. Am. Thorac. Soc. 12 (Suppl. 2), S150–S156 (2015).

    PubMed  Google Scholar 

  39. Trompette, A. et al. Gut microbiota metabolism of dietary fibre influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Dickson, R. P. et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1, 16113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fagundes, C. T. et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J. Immunol. 188, 1411–1420 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gauguet, S. et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect. Immun. 83, 4003–4014 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujimura, K. E. et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl Acad. Sci. USA 111, 805–810 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Samuelson, D. R., Welsh, D. A. & Shellito, J. E. Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol. 6, 1085 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen, Y. & Blaser, M. J. Inverse associations of Helicobacter pylori with asthma and allergy. Arch. Intern. Med. 167, 821–827 (2007).

    Article  PubMed  Google Scholar 

  47. Reibman, J. et al. Asthma is inversely associated with Helicobacter pylori status in an urban population. PLoS ONE 3, e4060 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, Y. & Blaser, M. J. Helicobacter pylori colonization is inversely associated with childhood asthma. J. Infect. Dis. 198, 553–560 (2008).

    Article  PubMed  Google Scholar 

  49. Wang, F., Liu, J., Zhang, Y. & Lei, P. Association of Helicobacter pylori infection with chronic obstructive pulmonary disease and chronic bronchitis: a meta-analysis of 16 studies. Infect. Dis. (Lond.) 47, 597–603 (2015).

    Article  Google Scholar 

  50. Hussain, K. et al. Helicobacter pylori-mediated protection from allergy is associated with IL-10-secreting peripheral blood regulatory T cells. Front. Immunol. 7, 71 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McGhee, J. R. et al. Lipopolysaccharide (LPS) regulation of the immune response: T lymphocytes from normal mice suppress mitogenic and immunogenic responses to LPS. J. Immunol. 124, 1603–1611 (1980).

    CAS  PubMed  Google Scholar 

  52. Michalek, S. M., Kiyono, H., Wannemuehler, M. J., Mosteller, L. M. & McGhee, J. R. Lipopolysaccharide (LPS) regulation of the immune response: LPS influence on oral tolerance induction. J. Immunol. 128, 1992–1998 (1982).

    CAS  PubMed  Google Scholar 

  53. Ueda, Y. et al. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int. Immunol. 22, 953–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Sharon, G. et al. Specialized metabolites from the microbiome in health and disease. Cell Metab. 20, 719–730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abrahamsson, T. R. et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 44, 842–850 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Vael, C., Nelen, V., Verhulst, S. L., Goossens, H. & Desager, K. N. Early intestinal Bacteroides fragilis colonisation and development of asthma. BMC Pulm. Med. 8, 19 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Orivuori, L. et al. High level of faecal calprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clin. Exp. Allergy 45, 928–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Russell, S. L. et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4, 158–164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hevia, A. et al. Allergic patients with long-term asthma display low levels of Bifidobacterium adolescentis. PLoS ONE 11, e0147809 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hua, X., Goedert, J. J., Pu, A., Yu, G. & Shi, J. Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine 3, 172–179 (2016).

    Article  PubMed  Google Scholar 

  65. He, F. et al. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol. Immunol. 46, 781–785 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Johnson, J. L., Jones, M. B. & Cobb, B. A. Bacterial capsular polysaccharide prevents the onset of asthma through T cell activation. Glycobiology 25, 368–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Sehrawat, A., Sinha, S. & Saxena, A. Helicobacter pylori neutrophil-activating protein: a potential Treg modulator suppressing allergic asthma. Front. Microbiol. 6, 493 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Koch, K. N. et al. Helicobacter urease-induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma. J. Clin. Invest. 125, 3297–3302 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Engler, D. B. et al. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10. Proc. Natl Acad. Sci. USA 111, 11810–11815 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, Y. G. et al. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE(2). Cell Host Microbe 15, 95–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zaiss, M. M. et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 45, 998–1010 (2015).

    Article  CAS  Google Scholar 

  72. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, F. et al. Early-life exposure to Clostridium leptum causes pulmonary immunosuppression. PLoS ONE 10, e0141717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, Y. N. et al. Effect of oral feeding with Clostridium leptum on regulatory T-cell responses and allergic airway inflammation in mice. Ann. Allergy Asthma Immunol. 109, 201–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Segal, L. N. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1, 19 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pragman, A. A., Kim, H. B., Reilly, C. S., Wendt, C. & Isaacson, R. E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7, e47305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sze, M. A. et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 185, 1073–1080 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Benjamin, J. L. et al. Smokers with active Crohn's disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm. Bowel Dis. 18, 1092–1100 (2012).

    Article  PubMed  Google Scholar 

  79. Biedermann, L. et al. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples. Inflamm. Bowel Dis. 20, 1496–1501 (2014).

    Article  PubMed  Google Scholar 

  80. Kabeerdoss, J., Jayakanthan, P., Pugazhendhi, S. & Ramakrishna, B. S. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J. Med. Res. 142, 23–32 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwab, C. et al. Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME J. 8, 1101–1114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khonsari, S. et al. A comparative study of bifidobacteria in human babies and adults. Biosci. Microbiota Food Health 35, 97–103 (2016).

    Article  PubMed  Google Scholar 

  83. Verschuere, S. et al. Cigarette smoking alters epithelial apoptosis and immune composition in murine GALT. Lab. Invest. 91, 1056–1067 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Allais, L. et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. 18, 1352–1363 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Hammadi, M., Adi, M., John, R., Khoder, G. A. & Karam, S. M. Dysregulation of gastric H,K-ATPase by cigarette smoke extract. World J. Gastroenterol. 15, 4016–4022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sapkota, A. R., Berger, S. & Vogel, T. M. Human pathogens abundant in the bacterial metagenome of cigarettes. Environ. Health Perspect. 118, 351–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Kulkarni, R. et al. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Intect Immun. 80, 3804–3811 (2012).

    Article  CAS  Google Scholar 

  88. Semlali, A., Killer, K., Alanazi, H., Chmielewski, W. & Rouabhia, M. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression. BMC Microbiol. 14, 61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hu, J., Wei, T., Sun, S., Zhao, A. & Xu, C. Effects of cigarette smoke condensate on the production and characterization of exopolysaccharides by Bifidobacterium. An. Acad. Bras. Cienc. 87, 997–1005 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Reale, M. et al. Daily intake of Lactobacillus casei Shirota increases natural killer cell activity in smokers. Br. J. Nutr. 108, 308–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Verheijden, K. A. T. et al. Treatment with specific prebiotics or probiotics prevents the development of lung emphysema in a mouse model of COPD. Eur. J. Pharmacol. 668, e12–e13 (2011).

    Article  Google Scholar 

  92. Mortaz, E. et al. Anti-inflammatory effects of Lactobacillus rahmnosus and Bifidobacterium breve on cigarette smoke activated human macrophages. PLoS ONE 10, e0136455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tomoda, K. et al. Whey peptide-based enteral diet attenuated elastase-induced emphysema with increase in short chain fatty acids in mice. BMC Pulm. Med. 15, 64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tomoda, K. et al. Cigarette smoke decreases organic acids levels and population of Bifidobacterium in caecum of rats. J. Toxicol. Sci. 36, 261–266 (2011).

    Article  PubMed  Google Scholar 

  95. Kish, L. et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS ONE 8, e62220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zuo, L. et al. Cigarette smoking is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice. J. Crohns Colitis 8, 1710–1722 (2014).

    Article  PubMed  Google Scholar 

  97. Huvenne, W. et al. Exacerbation of cigarette smoke-induced pulmonary inflammation by Staphylococcus aureus enterotoxin in mice. Respir. Res. 12, 69 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brass, D. M. et al. Chronic LPS inhalation causes emphysema-like changes in mouse lung that are associated with apoptosis. Am. J. Respir. Cell. Mol. Biol. 39, 584–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Suzuki, T., Yoshida, S. & Hara, H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr. 100, 297–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, L. W., Chen, P. H. & Hsu, C. M. Commensal microflora contribute to host defense against Escherichia coli pneumonia through toll-like receptors. Shock 36, 67–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Ichinohe, T. et al. Microbiota regulates immune defence against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wu, S. et al. Microbiota regulates the TLR7 signaling pathway against respiratory tract influenza A virus infection. Curr. Microbiol. 67, 414–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Vieira, A. T. et al. Control of Klebsiella pneumoniae pulmonary infection and immunomodulaation by oral treatment with commensal probiotic Bifidobacterium longum 51A. Microbes Infect. 18, 180–189 (2016).

    Article  PubMed  Google Scholar 

  105. Kawahara, T. et al. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol. Immunol. 59, 1–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Luoto, R. et al. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized placebo-controlled trial. J. Allergy Clin. Immunol. 133, 405–413 (2014).

    Article  PubMed  Google Scholar 

  107. Jespersen, L. et al. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Am. J. Clin. Nutr. 101, 1188–1196 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. King, S., Glanville, J., Sanders, M. E., Fitzgerald, A. & Varley, D. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis. Br. J. Nutr. 112, 41–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. West, N. P. et al. Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin. Nutr. 33, 581–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Clarke, T. B. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via Nod-like receptor ligands. Infect. Immun. 82, 4596–4606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oh, K. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bernard, H. et al. Dietary pectin-derived acidic oligosaccharides improve the pulmonary bacterial clearance of Pseudomonas aeruginosa lung infection in mice by modulating intestinal microbiota and immunity. J. Infect. Dis. 211, 156–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Kishino, E., Takemura, N., Masaki, H., Ito, T. & Nakazawa, M. Dietary lactosucrose suppresses influenza A (H1N1) virus infection in mice. Biosci. Microbiota Food Health 34, 67–76 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, J. et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated TH17 cell–dependent inflammation. J. Exp. Med. 211, 2397–2410 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Huang, Y. J. & LiPuma, J. J. The microbiome in cystic fibrosis. Clin. Chest Med. 37, 59–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Riedler, J. et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358, 1129–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Ball, T. M. et al. Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N. Engl. J. Med. 343, 538–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Bieber, T. Atopic dermatitis. N. Engl. J. Med. 358, 1483–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gale, E. A. The rise of childhood type 1 diabetes in the 20th century. Diabetes 51, 3353–3361 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Alonso, A. & Hernan, M. A. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71, 129–135 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  124. Ottman, N., Smidt, H., de Vos, W. M. & Belzer, C. The function of our microbiota: who is out there and what do they do? Front. Cell. Infect. Microbiol. 2, 104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Okada, H., Kuhn, C., Feillet, H. & Bach, J. F. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 160, 1–9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Maizels, R. M., McSorley, H. J. & Smyth, D. J. Helminths in the hygiene hypothesis: sooner or later? Clin. Exp. Immunol. 177, 38–46 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sun, X., Fiala, J. L. & Lowery, D. Patent watch: modulating the human microbiome with live biotherapeutic products: intellectual property landscape. Nat. Rev. Drug Discov. 15, 224–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Brown, A. J. et al. Pharmacological properties of acid N-thiazolylamide FFA2 agonists. Pharmacol. Res. Perspect. 3, e00141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hudson, B. D. et al. Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J. Biol. Chem. 288, 17296–17312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schmidt, J. et al. Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J. Biol. Chem. 286, 10628–10640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of fellowships from the Australian National Health and Medical Research Council (NHMRC; to M.A.C. and P.M.H.), the Australian Research Council (ARC; to P.H.), the Brawn Foundation, the Faculty of Health and Medicine at the University of Newcastle, Australia, and grants from the NHMRC and the Rainbow Foundation (to P.M.H.). The authors thank F. Thomson and M. Thomson for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Hansbro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budden, K., Gellatly, S., Wood, D. et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol 15, 55–63 (2017). https://doi.org/10.1038/nrmicro.2016.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.142

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing