Key Points
-
Cytotoxic T lymphocytes (CTLs) are increasingly being recognized as crucial components of antiviral immunity. Nevertheless, there remains much conjecture about both the mechanisms by which the epitope targets of antiviral CTL responses are selected and how the magnitude of those responses is achieved.
-
Although in many cases CTL precursor (CTLP) frequency predicts peptide–MHC class I position in the immunodominance hierarchy, studies in both mice and humans have demonstrated that there is frequently a disconnect between the number of naive CTLPs and the eventual response magnitude, which probably reflects differential patterns of recruitment or expansion of CTLPs following virus infection.
-
Differential CTLP contributions to the immune response have variably been attributed to both intrinsic mechanisms (for example, T cell receptor (TCR) affinity) and extrinsic mechanisms (for example, antigen dose and regulatory T cell-mediated suppression). Thus, although there has been recent interest in the potential efficacy of typically subdominant CTL responses, consideration should be given to the possibility that these CTL populations are intrinsically suboptimal.
-
Animal models suggest that inter-epitope CTL immunodomination is rare but occurs predominantly under conditions of limited resources (for example, limited levels of antigen or co-stimulation) that drive direct competition.
-
Antigen dose is a parameter that intuitively should correlate with CTL levels, but changing doses of viruses can lead to unexpected changes in immunogenicity between epitopes, and technology is currently limited for determining the doses of epitopes involved in priming CTLs. This remains an important area for future advances.
Abstract
Naive CD8+ T cells give rise to cytotoxic T lymphocytes (CTLs), which promote the effective eradication of viruses and tumours. Although the past decades have seen enormous advances in cellular immunology, a precise understanding of the key elements that determine the specificity and magnitude of primary CTL responses has been lacking. However, recent technological advances have allowed us to more accurately identify, characterize and quantitate key determinants that define the specificity and magnitude of CD8+ T cell-mediated immunity. This Review discusses the technical and conceptual advances that have markedly changed our understanding of the determinants of primary CTL responses.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Pardoll, D. M. Immunology beats cancer: a blueprint for successful translation. Nat. Immunol. 13, 1129–1132 (2012).
Demers, K. R., Reuter, M. A. & Betts, M. R. CD8+ T-cell effector function and transcriptional regulation during HIV pathogenesis. Immunol. Rev. 254, 190–206 (2013).
Pulendran, B., Li, S. & Nakaya, H. I. Systems vaccinology. Immunity 33, 516–529 (2010).
Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med. 13, 46–53 (2007).
Moutaftsi, M. et al. Correlates of protection efficacy induced by vaccinia virus-specific CD8+ T-cell epitopes in the murine intranasal challenge model. Eur. J. Immunol. 39, 717–722 (2009).
Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).
van Deutekom, H. W., Wijnker, G. & de Boer, R. J. The rate of immune escape vanishes when multiple immune responses control an HIV infection. J. Immunol. 191, 3277–3286 (2013).
Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).
Marzo, A. L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol. 6, 793–799 (2005).
Ford, M. L. et al. Antigen-specific precursor frequency impacts T cell proliferation, differentiation, and requirement for costimulation. J. Exp. Med. 204, 299–309 (2007).
Jenkins, M. K. & Moon, J. J. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 188, 4135–4140 (2012).
Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).
Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).
Kedzierska, K. et al. Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. J. Immunol. 177, 6705–6712 (2006).
Pewe, L. L., Netland, J. M., Heard, S. B. & Perlman, S. Very diverse CD8 T cell clonotypic responses after virus infections. J. Immunol. 172, 3151–3156 (2004).
Pittet, M. J. et al. High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J. Exp. Med. 190, 705–715 (1999).
Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007). This paper provides the first description of the identification of naive epitope-specific CD4+ T cells by tetramer-based magnetic enrichment.
McDermott, A. B., Spiegel, H. M., Irsch, J., Ogg, G. S. & Nixon, D. F. A simple and rapid magnetic bead separation technique for the isolation of tetramer-positive virus-specific CD8 T cells. AIDS 15, 810–812 (2001).
Luxembourg, A. T. et al. Biomagnetic isolation of antigen-specific CD8+ T cells usable in immunotherapy. Nat. Biotechnol. 16, 281–285 (1998).
Obar, J. J., Khanna, K. M. & Lefrancois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–869 (2008).
Kotturi, M. F. et al. Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. J. Immunol. 181, 2124–2133 (2008).
Alanio, C., Lemaitre, F., Law, H. K., Hasan, M. & Albert, M. L. Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood 115, 3718–3725 (2010).
Davis, M. M., Altman, J. D. & Newell, E. W. Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis. Nat. Rev. Immunol. 11, 551–558 (2011).
Choi, E. Y. et al. Immunodominance of H60 is caused by an abnormally high precursor T cell pool directed against its unique minor histocompatibility antigen peptide. Immunity 17, 593–603 (2002).
La Gruta, N. L. et al. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J. Clin. Invest. 120, 1885–1894 (2010). This is the first study to demonstrate an inverse relationship between CTLP frequency and immunodominance hierarchy, arising as a consequence of abrogated expansion and/or incomplete recruitment of CTLPs.
Chu, H. H., Moon, J. J., Kruse, A. C., Pepper, M. & Jenkins, M. K. Negative selection and peptide chemistry determine the size of naive foreign peptide–MHC class II-specific CD4+ T cell populations. J. Immunol. 185, 4705–4713 (2010).
Gilchuk, P. et al. Discovering naturally processed antigenic determinants that confer protective T cell immunity. J. Clin. Invest. 123, 1976–1987 (2013).
Feliu, V. et al. Location of the CD8 T cell epitope within the antigenic precursor determines immunogenicity and protection against the Toxoplasma gondii parasite. PLoS Pathog. 9, e1003449 (2013).
Schmidt, J. et al. Rapid antigen processing and presentation of a protective and immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell epitope. PLoS Pathog. 8, e1003042 (2012).
Iglesias, M. C. et al. Immunodominance of HLA-B27-restricted HIV KK10-specific CD8+ T-cells is not related to naive precursor frequency. Immunol. Lett. 149, 119–122 (2013).
Tan, A. C., La Gruta, N. L., Zeng, W. & Jackson, D. C. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. J. Immunol. 187, 1895–1902 (2011).
van Heijst, J. W. et al. Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science 325, 1265–1269 (2009).
Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).
Coles, R. M. et al. Virus infection expands a biased subset of T cells that bind tetrameric class I peptide complexes. Eur. J. Immunol. 33, 1557–1567 (2003).
Malherbe, L., Hausl, C., Teyton, L. & McHeyzer-Williams, M. G. Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties. Immunity 21, 669–679 (2004).
Pace, L. et al. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. Science 338, 532–536 (2012).
Yu, W. et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42, 929–941 (2015).
Cukalac, T. et al. The influenza virus-specific CTL immunodominance hierarchy in mice is determined by the relative frequency of high-avidity T cells. J. Immunol. 192, 4061–4068 (2014).
Miles, J. J., Douek, D. C. & Price, D. A. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol. Cell Biol. 89, 375–387 (2011).
Turner, S. J., Doherty, P. C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).
Chen, H. et al. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nat. Immunol. 13, 691–700 (2012).
Dong, T. et al. HIV-specific cytotoxic T cells from long-term survivors select a unique T cell receptor. J. Exp. Med. 200, 1547–1557 (2004).
Argaet, V. P. et al. Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein–Barr virus. J. Exp. Med. 180, 2335–2340 (1994).
Lehner, P. J. et al. Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the Vβ17 gene segment. J. Exp. Med. 181, 79–91 (1995).
Lawson, T. M. et al. Influenza A antigen exposure selects dominant Vβ17+ TCR in human CD8+ cytotoxic T cell responses. Int. Immunol. 13, 1373–1381 (2001).
Cukalac, T. et al. Paired TCRαβ analysis of virus-specific CD8+ T cells exposes diversity in a previously defined 'narrow' repertoire. Immunol. Cell Biol. http://dx.doi.org/10.1038/icb.2015.44 (2015).
Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).
Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).
McHeyzer-Williams, L. J., Panus, J. F., Mikszta, J. A. & McHeyzer-Williams, M. G. Evolution of antigen-specific T cell receptors in vivo: preimmune and antigen-driven selection of preferred complementarity-determining region 3 (CDR3) motifs. J. Exp. Med. 189, 1823–1838 (1999).
Cukalac, T. et al. Reproducible selection of high avidity CD8+ T-cell clones following secondary acute virus infection. Proc. Natl Acad. Sci. USA 111, 1485–1490 (2014).
Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).
Price, D. A. et al. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J. Exp. Med. 202, 1349–1361 (2005).
Wensveen, F. M. et al. Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones. Immunity 32, 754–765 (2010).
Heit, A. et al. Circumvention of regulatory CD4+ T cell activity during cross-priming strongly enhances T cell-mediated immunity. Eur. J. Immunol. 38, 1585–1597 (2008).
Ruckwardt, T. J. et al. Neonatal CD8 T-cell hierarchy is distinct from adults and is influenced by intrinsic T cell properties in respiratory syncytial virus infected mice. PLoS Pathog. 7, e1002377 (2011).
Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).
Decman, V. et al. Defective CD8 T cell responses in aged mice are due to quantitative and qualitative changes in virus-specific precursors. J. Immunol. 188, 1933–1941 (2012).
Nikolich-Zugich, J. Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J. Immunol. 193, 2622–2629 (2014).
Selin, L. K. et al. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol. Rev. 211, 164–181 (2006).
Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38, 373–383 (2013).
Kedl, R. M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).
Kastenmuller, W. et al. Cross-competition of CD8+ T cells shapes the immunodominance hierarchy during boost vaccination. J. Exp. Med. 204, 2187–2198 (2007).
Jenkins, M. R., Webby, R., Doherty, P. C. & Turner, S. J. Addition of a prominent epitope affects influenza A virus-specific CD8+ T cell immunodominance hierarchies when antigen is limiting. J. Immunol. 177, 2917–2925 (2006).
Andreansky, S. S. et al. Consequences of immunodominant epitope deletion for minor influenza virus-specific CD8+-T-cell responses. J. Virol. 79, 4329–4339 (2005).
Vijh, S., Pilip, I. M. & Pamer, E. G. Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect. Immun. 67, 1303–1309 (1999).
Chen, W. & McCluskey, J. Immunodominance and immunodomination: critical factors in developing effective CD8+ T-cell-based cancer vaccines. Adv. Cancer Res. 95, 203–247 (2006).
Fryer, H. R., Scherer, A., Oxenius, A., Phillips, R. & McLean, A. R. No evidence for competition between cytotoxic T-lymphocyte responses in HIV-1 infection. Proc. Biol. Sci. 276, 4389–4397 (2009).
Wolpert, E. Z., Grufman, P., Sandberg, J. K., Tegnesjö, A. & Kärre, K. Immunodominance in the CTL response against minor histocompatibility antigens: interference between responding T cells, rather than with presentation of epitopes. J. Immunol. 161, 4499–4505 (1998).
Lin, L. C., Flesch, I. E. & Tscharke, D. C. Immunodomination during peripheral vaccinia virus infection. PLoS Pathog. 9, e1003329 (2013).
Luciani, F., Sanders, M. T., Oveissi, S., Pang, K. C. & Chen, W. Increasing viral dose causes a reversal in CD8+ T cell immunodominance during primary influenza infection due to differences in antigen presentation, T cell avidity, and precursor numbers. J. Immunol. 190, 36–47 (2013). This study provides an example of how modelling can be combined with experimentation to help to explain changes in CTL immunity that are otherwise difficult to understand.
Wherry, E. J., Puorro, K. A., Porgador, A. & Eisenlohr, L. C. The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J. Immunol. 163, 3735–3745 (1999). This study represents the best experimental demonstration that increasing antigen abundance increases CTL responses only up to a certain threshold.
Croft, N. P., Purcell, A. W. & Tscharke, D. C. Quantifying epitope presentation using mass spectrometry. Mol. Immunol. http://dx.doi.org/10.1016/j.molimm.2015.06.010 (2015).
Croft, N. P. et al. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog. 9, e1003129 (2013). This is the largest study to date to determine epitope abundance on virus-infected cells over time. It also relates epitope presentation to viral antigen expression and immunogenicity.
Sette, A. et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592 (1994).
Paul, S. et al. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 191, 5831–5839 (2013).
van der Burg, S. H., Visseren, M. J., Brandt, R. M., Kast, W. M. & Melief, C. J. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 156, 3308–3314 (1996).
Harndahl, M. et al. Peptide–MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol. 42, 1405–1416 (2012).
Moutaftsi, M. et al. A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nat. Biotechnol. 24, 817–819 (2006).
Restifo, N. P. et al. Antigen processing in vivo and the elicitation of primary CTL responses. J. Immunol. 154, 4414–4422 (1995).
Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R. & Germain, R. N. Localization, quantitation, and in situ detection of specfic peptide–MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).
Sigal, L. J., Crotty, S., Andino, R. & Rock, K. L. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398, 77–80 (1999).
Norbury, C. C. et al. CD8+ T cell cross-priming via transfer of proteasome substrates. Science 304, 1318–1321 (2004).
Wolkers, M. C., Brouwenstijn, N., Bakker, A. H., Toebes, M. & Schumacher, T. N. M. Antigen bias in T cell cross-priming. Science 304, 1314–1317 (2004).
Millar, J. et al. The magnitude of the CD8+ T cell response produced by recombinant virus vectors is a function of both the antigen and the vector. Cell. Immunol. 250, 55–67 (2007).
Antón, L. C. & Yewdell, J. W. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J. Leukoc. Biol. 95, 551–562 (2014).
Rock, K. L., Farfán-Arribas, D. J., Colbert, J. D. & Goldberg, A. L. Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol. 35, 144–152 (2014).
Hoof, I., van Baarle, D., Hildebrand, W. H. & Kesmir, C. Proteome sampling by the HLA class I antigen processing pathway. PLoS Comput. Biol. 8, e1002517 (2012).
Hassan, C. et al. The human leukocyte antigen-presented ligandome of B lymphocytes. Mol. Cell Proteom. 12, 1829–1843 (2013).
Tellam, J. T., Lekieffre, L., Zhong, J., Lynn, D. J. & Khanna, R. Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLoS Pathog. 8, e1003112 (2012).
Epstein, S. L. Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J. Infect. Dis. 193, 49–53 (2006).
McElhaney, J. E. et al. T cell responses are better correlates of vaccine protection in the elderly. J. Immunol. 176, 6333–6339 (2006).
McMichael, A. J., Gotch, F. M., Noble, G. R. & Beare, P. A. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309, 13–17 (1983).
Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).
Gottschalk, S., Rooney, C. M. & Heslop, H. E. Post-transplant lymphoproliferative disorders. Annu. Rev. Med. 56, 29–44 (2005).
de Pagter, P. J. et al. Human herpesvirus type 6 reactivation after haematopoietic stem cell transplantation. J. Clin. Virol. 43, 361–366 (2008).
Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).
Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 3, 205–211 (1997).
Goulder, P. J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).
Carrington, M. & O'Brien, S. J. The influence of HLA genotype on AIDS. Annu. Rev. Med. 54, 535–551 (2003).
Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).
Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).
Goonetilleke, N. et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 206, 1253–1272 (2009).
Bunde, T. et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J. Exp. Med. 201, 1031–1036 (2005).
Gallimore, A., Dumrese, T., Hengartner, H., Zinkernagel, R. M. & Rammensee, H. G. Protective immunity does not correlate with the hierarchy of virus-specific cytotoxic T cell responses to naturally processed peptides. J. Exp. Med. 187, 1647–1657 (1998).
Kaul, R. et al. CD8+ lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J. Clin. Invest. 107, 1303–1310 (2001).
Frahm, N. et al. Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nat. Immunol. 7, 173–178 (2006).
Hancock, G. et al. Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses. PLoS Pathog. 11, e1004658 (2015).
Keskin, D. B. et al. Physical detection of influenza A epitopes identifies a stealth subset on human lung epithelium evading natural CD8 immunity. Proc. Natl Acad. Sci. USA 112, 2151–2156 (2015).
St Leger, A. J., Jeon, S. & Hendricks, R. L. Broadening the repertoire of functional herpes simplex virus type 1-specific CD8+ T cells reduces viral reactivation from latency in sensory ganglia. J. Immunol. 191, 2258–2265 (2013).
Remakus, S., Rubio, D., Ma, X., Sette, A. & Sigal, L. J. Memory CD8+ T cells specific for a single immunodominant or subdominant determinant induced by peptide–dendritic cell immunization protect from an acute lethal viral disease. J. Virol. 86, 9748–9759 (2012).
Hickman, H. D. et al. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat. Immunol. 9, 155–165 (2008).
Xu, R. H., Remakus, S., Ma, X., Roscoe, F. & Sigal, L. J. Direct presentation is sufficient for an efficient anti-viral CD8 T cell response. PLoS Pathog. 6, e1000768 (2010). This is the clearest dissection to date of the roles of direct presentation and cross-presentation in priming CTLs following virus infection.
Allan, R. S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).
Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).
Heath, W. R. & Carbone, F. R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10, 1237–1244 (2009).
Wong, Y. C., Smith, S. A. & Tscharke, D. C. Systemic toll-like receptor ligation and selective killing of dendritic cell subsets fail to dissect priming pathways for anti-vaccinia virus CD8+ T cells. J. Virol. 87, 11978–11986 (2013).
Singh, R. & Cresswell, P. Defective cross-presentation of viral antigens in GILT-free mice. Science 328, 1394–1398 (2010).
Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).
Iborra, S. et al. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J. Clin. Invest. 122, 1628–1643 (2012).
Wakim, L. M. & Bevan, M. J. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 471, 629–632 (2011).
Day, E. B. et al. Effect of MHC class I diversification on influenza epitope-specific CD8+ T cell precursor frequency and subsequent effector function. J. Immunol. 186, 6319–6328 (2011).
Acknowledgements
The authors wish to acknowledge the invaluable work that, owing to space limitations, could not be cited here. They thank F. Mercuri who assisted with editing of the manuscript. D.C.T. and N.P.C. are supported by a National Health and Medical Research Council (NHMRC) Project Grant (AIAPP1084283). D.C.T. is funded by an Australian Council of Research (ARC) Future Fellowship (FT110100310). N.L.G and P.C.D. are supported by an NHMRC Program Grant (5671222). N.L.G. is supported by an NHMRC Project Grant (AI1046333), and a Sylvia and Charles Viertel Senior Medical Research Fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Peptide–MHC class I
-
(pMHCI). A complex of peptide (often derived from virus in case of infection) and MHC class I molecule, which is expressed on the surface of cells and recognized by specific CD8+ T cells through their T cell receptor.
- CTL precursors
-
(CTLPs). Naive peptide–MHC class I-specific CD8+ T cells that have not encountered cognate antigen.
- Complementarity-determining region 3β
-
(CDR3β). An amino acid (or nucleotide) sequence that is found within the most variable region of the T cell receptor-β chain and is used as an identifier of distinct T cell clones.
- Altered peptide ligands
-
Peptides that have one or more residues mutated from the original cognate peptide and that are typically used to alter the strength of recognition through the T cell receptor.
- Type I–type III bias
-
Types of bias observed in antigen-specific T cell repertoires: type I bias is the preferential usage of particular T cell receptor-α (TCRα) chain variable (TRAV) or TCRβ chain variable (TRBV) gene segments; type II bias is the preferential usage of particular TRAV or TRBV gene segments along with conserved amino acids at designated positions in the complementarity-determining region 3 (CDR3); and type III bias is repeated use of the same variable (V) region, joining (J) region and CDR3 amino acid sequence.
- Minor histocompatibility antigens
-
(MiHAs). Non-MHC-encoded antigens that exhibit polymorphism between individuals and so can elicit immune responses when presented in complex with MHC class I molecules.
- Proteome
-
The entire set of proteins expressed by a cell or organism.
Rights and permissions
About this article
Cite this article
Tscharke, D., Croft, N., Doherty, P. et al. Sizing up the key determinants of the CD8+ T cell response. Nat Rev Immunol 15, 705–716 (2015). https://doi.org/10.1038/nri3905
Published:
Issue Date:
DOI: https://doi.org/10.1038/nri3905