Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex differences in immune responses

Key Points

  • Sex is a biological variable that affects the functions of the immune system.

  • Sex differences occur in both innate and adaptive immune responses and are evolutionarily conserved across diverse species.

  • Sex differences in immune responses change throughout life and are influenced by both the age and reproductive status of an individual.

  • Sex chromosome genes and sex hormones, including oestrogens, progesterone and androgens, contribute to the differential regulation of immune responses between the sexes.

  • Environmental factors, including nutrition status and the composition of the microbiome, also alter the development and functioning of the immune system differently in males and females.

  • Sex differences in immune responses result in differential susceptibility of males and females to autoimmune diseases, malignancies and infectious diseases, as well as affecting the outcome of vaccination.

Abstract

Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in immune responses in human males and females over the life course.
Figure 2: Sex bias in infectious diseases, inflammatory diseases and cancers.

Similar content being viewed by others

References

  1. Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav Rev. 35, 565–572 (2011).

    PubMed  Google Scholar 

  2. Zuk, M. The sicker sex. PLoS Pathog. 5, e1000267 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Hill-Burns, E. M. & Clark, A. G. X-Linked variation in immune response in Drosophila melanogaster. Genetics 183, 1477–1491 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Taylor, K. & Kimbrell, D. A. Host immune response and differential survival of the sexes in Drosophila. Fly (Austin) 1, 197–204 (2007).

    Google Scholar 

  5. Mondal, S. & Rai, U. Sexual dimorphism in phagocytic activity of wall lizard's splenic macrophage and its control by sex steroids. Gen. Comp. Endocrinol. 116, 291–298 (1999).

    CAS  PubMed  Google Scholar 

  6. Pap, P. L., Czirjak, G. A., Vagasi, C. I., Barta, Z. & Hasselquist, D. Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 97, 891–901 (2010).

    CAS  PubMed  Google Scholar 

  7. Fargallo, J. A., Martinez-Padilla, J., Toledano-Diaz, A., Santiago-Moreno, J. & Davila, J. A. Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J. Anim. Ecol. 76, 201–209 (2007).

    PubMed  Google Scholar 

  8. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    CAS  PubMed  Google Scholar 

  9. Berghofer, B. et al. TLR7 ligands induce higher IFN-α production in females. J. Immunol. 177, 2088–2096 (2006).

    PubMed  Google Scholar 

  10. Griesbeck, M. et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. J. Immunol. 195, 5327–5336 (2015). This study provides mechanistic insights into the cellular mechanisms mediating sex differences in antiviral immunity in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Klein, S. L., Jedlicka, A. & Pekosz, A. The Xs and Y of immune responses to viral vaccines. Lancet Infect. Dis. 10, 338–349 (2010). This thorough review provides details about sex differences in immune responses, including transcriptional activation, and adverse reactions to vaccines in humans and animal models.

    PubMed  PubMed Central  Google Scholar 

  12. Hannah, M. F., Bajic, V. B. & Klein, S. L. Sex differences in the recognition of and innate antiviral responses to Seoul virus in Norway rats. Brain Behav. Immun. 22, 503–516 (2008).

    CAS  PubMed  Google Scholar 

  13. Torcia, M. G. et al. Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL-10 production in males. PLoS ONE 7, e39853 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moxley, G. et al. Sexual dimorphism in innate immunity. Arthritis Rheum. 46, 250–258 (2002).

    PubMed  Google Scholar 

  15. Asai, K. et al. Gender differences in cytokine secretion by human peripheral blood mononuclear cells: role of estrogen in modulating LPS-induced cytokine secretion in an ex vivo septic model. Shock 16, 340–343 (2001).

    CAS  PubMed  Google Scholar 

  16. Aomatsu, M., Kato, T., Kasahara, E. & Kitagawa, S. Gender difference in tumor necrosis factor-α production in human neutrophils stimulated by lipopolysaccharide and interferon-γ. Biochem. Biophys. Res. Commun. 441, 220–225 (2013).

    CAS  PubMed  Google Scholar 

  17. Marriott, I., Bost, K. L. & Huet-Hudson, Y. M. Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J. Reprod. Immunol. 71, 12–27 (2006). The first study to document sex differences in TLR4 activation and disease outcome.

    CAS  PubMed  Google Scholar 

  18. Rettew, J. A., Huet-Hudson, Y. M. & Marriott, I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437 (2008).

    CAS  PubMed  Google Scholar 

  19. Abdullah, M. et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell. Immunol. 272, 214–219 (2012).

    CAS  PubMed  Google Scholar 

  20. Spitzer, J. A. Gender differences in some host defense mechanisms. Lupus 8, 380–383 (1999).

    CAS  PubMed  Google Scholar 

  21. Weinstein, Y., Ran, S. & Segal, S. Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J. Immunol. 132, 656–661 (1984).

    CAS  PubMed  Google Scholar 

  22. Russi, A. E., Walker-Caulfield, M. E., Ebel, M. E. & Brown, M. A. Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J. Immunol. 194, 5609–5613 (2015). The first documentation of sex differences in innate lymphoid cells, with direct implications for sex differential susceptibility to an autoimmune disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Leposavic, G., Pilipovic, I. & Perisic, M. Cellular and nerve fibre catecholaminergic thymic network: steroid hormone dependent activity. Physiol. Res. 60 (Suppl. 1), S71–S82 (2011).

    CAS  PubMed  Google Scholar 

  24. Leposavic, G., Karapetrovic, B., Obradovic, S., Vidiic Dandovic, B. & Kosec, D. Differential effects of gonadectomy on the thymocyte phenotypic profile in male and female rats. Pharmacol. Biochem. Behav. 54, 269–276 (1996).

    CAS  PubMed  Google Scholar 

  25. Lee, B. W. et al. Age- and sex-related changes in lymphocyte subpopulations of healthy Asian subjects: from birth to adulthood. Cytometry 26, 8–15 (1996).

    CAS  PubMed  Google Scholar 

  26. Lisse, I. M. et al. T-Lymphocyte subsets in West African children: impact of age, sex, and season. J. Pediatr. 130, 77–85 (1997).

    CAS  PubMed  Google Scholar 

  27. Uppal, S. S., Verma, S. & Dhot, P. S. Normal values of CD4 and CD8 lymphocyte subsets in healthy indian adults and the effects of sex, age, ethnicity, and smoking. Cytometry B Clin. Cytom. 52, 32–36 (2003).

    CAS  PubMed  Google Scholar 

  28. Sankaran-Walters, S. et al. Sex differences matter in the gut: effect on mucosal immune activation and inflammation. Biol. Sex Differ. 4, 10 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Hewagama, A., Patel, D., Yarlagadda, S., Strickland, F. M. & Richardson, B. C. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun. 10, 509–516 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts, C. W., Walker, W. & Alexander, J. Sex-associated hormones and immunity to protozoan parasites. Clin. Microbiol. Rev. 14, 476–488 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Giron-Gonzalez, J. A. et al. Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared with women. Eur. J. Endocrinol. 143, 31–36 (2000).

    CAS  PubMed  Google Scholar 

  32. Zhang, M. A. et al. Peroxisome proliferator-activated receptor (PPAR)α and -γ regulate IFNγ and IL-17A production by human T cells in a sex-specific way. Proc. Natl Acad. Sci. USA 109, 9505–9510 (2012).

    CAS  PubMed  Google Scholar 

  33. Afshan, G., Afzal, N. & Qureshi, S. CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin. Lab. 58, 567–571 (2012).

    PubMed  Google Scholar 

  34. Teixeira, D. et al. Evaluation of lymphocyte levels in a random sample of 218 elderly individuals from Sao Paulo city. Rev. Bras. Hematol. Hemoter. 33, 367–371 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl Acad. Sci. USA 111, 869–874 (2014). This systems biology study identifies a testosterone- sensitive gene cluster involved in lipid biosynthesis that correlates with lower protective antibody responses to seasonal influenza vaccination in men.

    CAS  PubMed  Google Scholar 

  36. Fan, H. et al. Gender differences of B cell signature in healthy subjects underlie disparities in incidence and course of SLE related to estrogen. J. Immunol. Res. 2014, 814598 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Libert, C., Dejager, L. & Pinheiro, I. The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10, 594–604 (2010). This paper reviews the major mechanisms responsible for higher immune activity in females as compared with men.

    CAS  PubMed  Google Scholar 

  38. Case, L. K. et al. Chromosome Y regulates survival following murine coxsackievirus b3 infection. G3 (Bethesda) 2, 115–121 (2012).

    CAS  Google Scholar 

  39. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008). A mouse study of two models of autoimmune disease providing the first evidence that the XX chromosome complement confers greater susceptibility to autoimmunity than the XY sex chromosome complement.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Robinson, D. P. et al. Sex chromosome complement contributes to sex differences in coxsackievirus B3 but not influenza A virus pathogenesis. Biol. Sex Differ. 2, 8 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Kocar, I. H. et al. The effect of testosterone replacement treatment on immunological features of patients with Klinefelter's syndrome. Clin. Exp. Immunol. 121, 448–452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).

    CAS  PubMed  Google Scholar 

  43. Cacciari, E. et al. Serum immunoglobulins and lymphocyte subpopulations derangement in Turner's syndrome. J. Immunogenet. 8, 337–344 (1981).

    CAS  PubMed  Google Scholar 

  44. Sharma, S. & Eghbali, M. Influence of sex differences on microRNA gene regulation in disease. Biol. Sex Differ. 5, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Ghorai, A. & Ghosh, U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front. Genet. 5, 100 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Pinheiro, I., Dejager, L. & Libert, C. X-Chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. BioEssays 33, 791–802 (2011). One of the first papers to hypothesize that X-linked miRNAs play a major part in the sex differences in immunity between males and females.

    CAS  PubMed  Google Scholar 

  47. Dai, R. et al. Sex differences in the expression of lupus-associated miRNAs in splenocytes from lupus-prone NZB/WF1 mice. Biol. Sex Differ. 4, 19 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Zhang, Y. & Cao, X. Long noncoding RNAs in innate immunity. Cell. Mol. Immunol. 13, 138–147 (2016).

    PubMed  Google Scholar 

  49. Gayen, S., Maclary, E., Hinten, M. & Kalantry, S. Sex-specific silencing of X-linked genes by Xist RNA. Proc. Natl Acad. Sci. USA 113, E309–E318 (2016).

    CAS  PubMed  Google Scholar 

  50. Baynam, G. et al. Gender-specific effects of cytokine gene polymorphisms on childhood vaccine responses. Vaccine 26, 3574–3579 (2008).

    CAS  PubMed  Google Scholar 

  51. Phiel, K. L., Henderson, R. A., Adelman, S. J. & Elloso, M. M. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol. Lett. 97, 107–113 (2005).

    CAS  PubMed  Google Scholar 

  52. Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 294, 63–69 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jilma, B. et al. Effects of 17β-estradiol on circulating adhesion molecules. J. Clin. Endocrinol. Metab. 79, 1619–1624 (1994).

    CAS  PubMed  Google Scholar 

  54. Robinson, D. P., Hall, O. J., Nilles, T. L., Bream, J. H. & Klein, S. L. 17β-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J. Virol. 88, 4711–4720 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Nakaya, M., Tachibana, H. & Yamada, K. Effect of estrogens on the interferon-γ producing cell population of mouse splenocytes. Biosci. Biotechnol. Biochem. 70, 47–53 (2006).

    CAS  PubMed  Google Scholar 

  56. Hao, S. et al. Modulation of 17β-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 7, 1765–1775 (2007).

    CAS  PubMed  Google Scholar 

  57. Bouman, A., Heineman, M. J. & Faas, M. M. Sex hormones and the immune response in humans. Hum. Reprod. Update 11, 411–423 (2005).

    CAS  PubMed  Google Scholar 

  58. Rettew, J. A., Huet, Y. M. & Marriott, I. Estrogens augment cell surface TLR4 expression on murine macrophages and regulate sepsis susceptibility in vivo. Endocrinology 150, 3877–3884 (2009).

    CAS  PubMed  Google Scholar 

  59. Paharkova-Vatchkova, V., Maldonado, R. & Kovats, S. Estrogen preferentially promotes the differentiation of CD11c+CD11bint dendritic cells from bone marrow precursors. J. Immunol. 172, 1426–1436 (2004). A rigorous evaluation of oestrogenic effects on DC differentiation and ER expression.

    CAS  PubMed  Google Scholar 

  60. Bengtsson, A. K., Ryan, E. J., Giordano, D., Magaletti, D. M. & Clark, E. A. 17β-estradiol (E2) modulates cytokine and chemokine expression in human monocyte-derived dendritic cells. Blood 104, 1404–1410 (2004).

    CAS  PubMed  Google Scholar 

  61. Siracusa, M. C., Overstreet, M. G., Housseau, F., Scott, A. L. & Klein, S. L. 17β-estradiol alters the activity of conventional and IFN-producing killer dendritic cells. J. Immunol. 180, 1423–1431 (2008).

    CAS  PubMed  Google Scholar 

  62. Miller, L. & Hunt, J. S. Sex steroid hormones and macrophage function. Life Sci. 59, 1–14 (1996).

    CAS  PubMed  Google Scholar 

  63. Seillet, C. et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor-α signaling. Blood 119, 454–464 (2012).

    CAS  PubMed  Google Scholar 

  64. Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007). An excellent review of oestrogenic effects on immune cells and immune-mediated diseases, with exceptional details about in vitro and in vivo studies, concentrations of oestrogen and identification of the biopotential effects of oestrogens on immune responses.

    CAS  PubMed  Google Scholar 

  65. Fox, H. S., Bond, B. L. & Parslow, T. G. Estrogen regulates the IFN-γ promoter. J. Immunol. 146, 4362–4367 (1991).

    CAS  PubMed  Google Scholar 

  66. Suzuki, T. et al. Mitogen activated protein kinase (MAPK) mediates non-genomic pathway of estrogen on T cell cytokine production following trauma-hemorrhage. Cytokine 42, 32–38 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Karpuzoglu, E., Phillips, R. A., Gogal, R. M. & Ansar Ahmed, S. IFN-γ-inducing transcription factor, T-bet is upregulated by estrogen in murine splenocytes: role of IL-27 but not IL-12. Mol. Immunol. 44, 1808–1814 (2007). An excellent example of the molecular mechanisms mediating how sex steroids, specifically oestrogens, regulate the functioning of immune cells in vivo.

    CAS  PubMed  Google Scholar 

  68. Dai, R. et al. Suppression of LPS-induced Interferon-γ and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood 112, 4591–4597 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Polanczyk, M. J. et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol. 173, 2227–2230 (2004). One of the first papers describing direct effects of sex steroids, specifically oestrogens, affecting a specific T cell population.

    CAS  PubMed  Google Scholar 

  70. Dinesh, R. K., Hahn, B. H. & Singh, R. P. Gender and sex hormones influence CD4 regulatory T cells and their expression of FoxP3 in healthy people and in SLE. Arthritis Rheum. Abstr. 62 (Suppl. 10), 1257 (2010).

    Google Scholar 

  71. Wang, C. et al. Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology 126, 329–335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tyagi, A. M. et al. Estrogen deficiency induces the differentiation of IL-17 secreting TH17 cells: a new candidate in the pathogenesis of osteoporosis. PloS ONE 7, e44552 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu, F. X. et al. The strength of B cell immunity in female rhesus macaques is controlled by CD8+ T cells under the influence of ovarian steroid hormones. Clin. Exp. Immunol. 128, 10–20 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pauklin, S., Sernandez, I. V., Bachmann, G., Ramiro, A. R. & Petersen-Mahrt, S. K. Estrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Teilmann, S. C., Clement, C. A., Thorup, J., Byskov, A. G. & Christensen, S. T. Expression and localization of the progesterone receptor in mouse and human reproductive organs. J. Endocrinol. 191, 525–535 (2006).

    CAS  PubMed  Google Scholar 

  76. Butts, C. L. et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int. Immunol. 19, 287–296 (2007).

    CAS  PubMed  Google Scholar 

  77. Jones, L. A. et al. Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. J. Immunol. 185, 4525–4534 (2010). Mechanistic details about how progesterone signalling through progesterone receptors affects DC maturation and function.

    CAS  PubMed  Google Scholar 

  78. Menzies, F. M., Henriquez, F. L., Alexander, J. & Roberts, C. W. Selective inhibition and augmentation of alternative macrophage activation by progesterone. Immunology 134, 281–291 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hardy, D. B., Janowski, B. A., Corey, D. R. & Mendelson, C. R. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-κB activation of cyclooxygenase 2 expression. Mol. Endocrinol. 20, 2724–2733 (2006).

    CAS  PubMed  Google Scholar 

  80. Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. 180, 5746–5753 (2008).

    CAS  PubMed  Google Scholar 

  81. Piccinni, M. P. et al. Progesterone favors the development of human T helper cells producing TH2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established TH1 cell clones. J. Immunol. 155, 128–133 (1995).

    CAS  PubMed  Google Scholar 

  82. Lee, J. H., Ulrich, B., Cho, J., Park, J. & Kim, C. H. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into TH17 cells. J. Immunol. 187, 1778–1787 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hou, J. & Zheng, W. F. Effect of sex hormones on NK and ADCC activity of mice. Int. J. Immunopharmacol. 10, 15–22 (1988).

    CAS  PubMed  Google Scholar 

  84. D'Agostino, P. et al. Sex hormones modulate inflammatory mediators produced by macrophages. Ann. NY Acad. Sci. 876, 426–429 (1999).

    CAS  PubMed  Google Scholar 

  85. Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).

    CAS  PubMed  Google Scholar 

  86. Pergola, C. et al. ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc. Natl Acad. Sci. USA 105, 19881–19886 (2008).

    CAS  PubMed  Google Scholar 

  87. Musabak, U. et al. Gonadotropin treatment restores in vitro interleukin-1β and tumour necrosis factor-α production by stimulated peripheral blood mononuclear cells from patients with idiopathic hypogonadotropic hypogonadism. Clin. Exp. Immunol. 132, 265–270 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Malkin, C. J. et al. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J. Clin. Endocrinol. Metab. 89, 3313–3318 (2004).

    CAS  PubMed  Google Scholar 

  89. Kalinchenko, S. Y. et al. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin. Endocrinol. (Oxf.) 73, 602–612 (2010).

    CAS  Google Scholar 

  90. Bobjer, J., Katrinaki, M., Tsatsanis, C., Lundberg Giwercman, Y. & Giwercman, A. Negative association between testosterone concentration and inflammatory markers in young men: a nested cross-sectional study. PLoS ONE 8, e61466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Page, S. T. et al. Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites. Am. J.Physiol. Endocrinol. Metabolism 290, E856–E863 (2006).

    CAS  Google Scholar 

  92. Roden, A. C. et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 173, 6098–6108 (2004).

    CAS  PubMed  Google Scholar 

  93. Lin, A. A., Wojciechowski, S. E. & Hildeman, D. A. Androgens suppress antigen-specific T cell responses and IFN-γ production during intracranial LCMV infection. J. Neuroimmunol. 226, 8–19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lotter, H. et al. Testosterone increases susceptibility to amebic liver abscess in mice and mediates inhibition of IFNγ secretion in natural killer T cells. PLoS ONE 8, e55694 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. McKay, L. I. & Cidlowski, J. A. Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways. Endocr. Rev. 20, 435–459 (1999).

    CAS  PubMed  Google Scholar 

  96. Dunn, S. E. et al. Peroxisome proliferator-activated receptor (PPAR)α expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J. Exp. Med. 204, 321–330 (2007). A detailed in vivo examination of the molecular mechanisms through which androgens affect T cell responses and the outcome of an autoimmune disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Khulan, B. et al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum. Mol. Genet. 21, 2086–2101 (2012). A double-blind controlled trial of maternal micronutrient supplementation demonstrating that peri-conceptional nutrition has sex- differential epigenetic effects on genes involved in immunity.

    CAS  PubMed  Google Scholar 

  98. Tobi, E. W. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18, 4046–4053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sinha, A., Madden, J., Ross-Degnan, D., Soumerai, S. & Platt, R. Reduced risk of neonatal respiratory infections among breastfed girls but not boys. Pediatrics 112, e303 (2003).

    PubMed  Google Scholar 

  100. Kawai, K. et al. Sex differences in the effects of maternal vitamin supplements on mortality and morbidity among children born to HIV-infected women in Tanzania. Br. J. Nutr. 103, 1784–1791 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Osrin, D. et al. Effects of antenatal multiple micronutrient supplementation on birthweight and gestational duration in Nepal: double-blind, randomised controlled trial. Lancet 365, 955–962 (2005).

    CAS  PubMed  Google Scholar 

  102. Friis, H. et al. Effect of multimicronutrient supplementation on gestational length and birth size: a randomized, placebo-controlled, double-blind effectiveness trial in Zimbabwe. Am. J. Clin. Nutr. 80, 178–184 (2004).

    CAS  PubMed  Google Scholar 

  103. Jensen, K. J. et al. The effects of vitamin A supplementation with measles vaccine on leucocyte counts and in vitro cytokine production. Br. J. Nutr. 115, 619–628 (2016).

    CAS  PubMed  Google Scholar 

  104. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013). A mouse-based study demonstrating that the gut microbiota alters sex hormone levels, which in turn protect mice male from type 1 diabetes. Transfer of male microbiota to susceptible females provided robust protection against type 1 diabetes.

    CAS  PubMed  Google Scholar 

  105. Yurkovetskiy, L. et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 39, 400–412 (2013).

    CAS  PubMed  Google Scholar 

  106. Steegenga, W. T. et al. Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice. Biol. Sex Differ. 5, 11 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Dominianni, C. et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE 10, e0124599 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014). This paper demonstrates that diet affects the microbiota differently in males and females in humans and fish, suggesting that treatment of dysbiosis may need to be sex specific.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bolnick, D. I. et al. Individuals' diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 17, 979–987 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Gluckman, P. D., Hanson, M. A., Spencer, H. G. & Bateson, P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc. Biol. Sci. 272, 671–677 (2005).

    PubMed  PubMed Central  Google Scholar 

  111. Goldenberg, R. L. et al. The Alabama Preterm Birth Study: intrauterine infection and placental histologic findings in preterm births of males and females less than 32 weeks. Am. J. Obstet. Gynecol. 195, 1533–1537 (2006).

    PubMed  Google Scholar 

  112. Carr, B. R. et al. Regulation of human fetal testicular secretion of testosterone: low-density lipoprotein-cholesterol and cholesterol synthesized de novo as steroid precursor. Am. J. Obstet. Gynecol. 146, 241–247 (1983).

    CAS  PubMed  Google Scholar 

  113. Liu, C. A. et al. Prediction of elevated cord blood IgE levels by maternal IgE levels, and the neonate's gender and gestational age. Chang Gung Med. J. 26, 561–569 (2003).

    PubMed  Google Scholar 

  114. Sharma, A. A. et al. Hierarchical maturation of innate immune defences in very preterm neonates. Neonatology 106, 1–9 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bellamy, G. J., Hinchliffe, R. F., Crawshaw, K. C., Finn, A. & Bell, F. Total and differential leucocyte counts in infants at 2, 5 and 13 months of age. Clin. Lab. Haematol. 22, 81–87 (2000).

    CAS  PubMed  Google Scholar 

  116. Casimir, G. J. et al. Gender differences and inflammation: an in vitro model of blood cells stimulation in prepubescent children. J. Inflamm. (Lond.) 7, 28 (2010).

    Google Scholar 

  117. Leposavic, G., Perisic, M. & Pilipovic, I. Role of gonadal hormones in programming developmental changes in thymopoietic efficiency and sexual diergism in thymopoiesis. Immunol. Res. 52, 7–19 (2012).

    CAS  PubMed  Google Scholar 

  118. Collier, F. M. et al. The ontogeny of naive and regulatory CD4+ T-cell subsets during the first postnatal year: a cohort study. Clin. Transl. Immunology 4, e34 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Obiandu, C., Okerengwo, A. A. & Dapper, D. V. Levels of serum immunoglobulins in apparently healthy children and adults in Port Harcourt, Nigeria. Niger. J. Physiol. Sci. 28, 23–27 (2013).

    CAS  PubMed  Google Scholar 

  120. Yang, Y. & Kozloski, M. Sex differences in age trajectories of physiological dysregulation: inflammation, metabolic syndrome, and allostatic load. J. Gerontol. A Biol. Sci. Med. Sci. 66, 493–500 (2011).

    PubMed  Google Scholar 

  121. Wong, W. S. et al. Reference ranges for lymphocyte subsets among healthy Hong Kong Chinese adults by single-platform flow cytometry. Clin. Vaccine Immunol. 20, 602–606 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lamason, R. et al. Sexual dimorphism in immune response genes as a function of puberty. BMC Immunol. 7, 2 (2006).

    PubMed  PubMed Central  Google Scholar 

  123. Arruvito, L., Sanz, M., Banham, A. H. & Fainboim, L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 178, 2572–2578 (2007).

    CAS  PubMed  Google Scholar 

  124. Giefing-Kroll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321 (2015). This paper reviews the interplay between sex hormones and the aging immune system, suggesting that elderly women remain immune-privileged even in the face of declining sex hormone levels post menopause.

    PubMed  PubMed Central  Google Scholar 

  125. Castelo-Branco, C. & Soveral, I. The immune system and aging: a review. Gynecol. Endocrinol. 30, 16–22 (2014).

    CAS  PubMed  Google Scholar 

  126. Hirokawa, K. et al. Slower immune system aging in women versus men in the Japanese population. Immun. Ageing 10, 19 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).

    CAS  PubMed  Google Scholar 

  129. Fairweather, D., Frisancho-Kiss, S. & Rose, N. R. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 173, 600–609 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Voskuhl, R. Sex differences in autoimmune diseases. Biol. Sex Differ. 2, 1 (2011).

    PubMed  PubMed Central  Google Scholar 

  131. Voskuhl, R. R. et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 35–46 (2016). A clinical trial using oestrogen (specifically the placental oestrogen, oestriol) to mitigate the debilitating effects of severe multiple sclerosis, showing that oestrogens can be used therapeutically to treat immune-mediated diseases.

    CAS  PubMed  Google Scholar 

  132. Gold, S. M., Chalifoux, S., Giesser, B. S. & Voskuhl, R. R. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J. Neuroinflammation 5, 32 (2008).

    PubMed  PubMed Central  Google Scholar 

  133. Cook, M. B. et al. Sex disparities in cancer incidence by period and age. Cancer Epidemiol. Biomarkers Prev. 18, 1174–1182 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Cook, M. B., McGlynn, K. A., Devesa, S. S., Freedman, N. D. & Anderson, W. F. Sex disparities in cancer mortality and survival. Cancer Epidemiol. Biomarkers Prev. 20, 1629–1637 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. Lista, P., Straface, E., Brunelleschi, S., Franconi, F. & Malorni, W. On the role of autophagy in human diseases: a gender perspective. J. Cell. Mol. Med. 15, 1443–1457 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lin, P. Y. et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J. Immunol. 185, 2747–2753 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Vom Steeg, L. G. & Klein, S. L. SeXX Matters in infectious disease pathogenesis. PLoS Pathog. 12, e1005374 (2016). A current review of sex differences in infectious diseases, with a detailed analysis of the mechanistic causes of sex differences in the outcome of infectious diseases in humans.

    PubMed  PubMed Central  Google Scholar 

  138. Fischer, J., Jung, N., Robinson, N. & Lehmann, C. Sex differences in immune responses to infectious diseases. Infection 43, 399–403 (2015).

    CAS  PubMed  Google Scholar 

  139. Sawyer, C. C. Child mortality estimation: estimating sex differences in childhood mortality since the 1970s. PLoS Med. 9, e1001287 (2012). This study used data from multiple sources to estimate sex ratios of mortality among children worldwide, demonstrating key differences in different regions of the world.

    PubMed  PubMed Central  Google Scholar 

  140. Flanagan, K. L. & Jensen, K. J. in Sex and Gender Differences in Infection and Treatments for Infectious Diseases (eds Klein, S. L. & Roberts, C. W.) 273–312 (Springer, 2015). This book chapter provides a comprehensive review of sex-based differences in immunity to vaccines and infections in under-5-year-old children.

    Google Scholar 

  141. Griesbeck, M. & Altfeld, M. in Sex and Gender Differences in Infection and Treatments for Infectious Diseases (eds Klein, S. L. & Roberts, C. W.) 103–181 (Springer, 2015).

    Google Scholar 

  142. Cook, I. F. Sexual dimorphism of humoral immunity with human vaccines. Vaccine 26, 3551–3555 (2008). A comprehensive review of studies demonstrating sex-based differences in antibody responses to vaccines. Multiple vaccines were implicated, highlighting the need to consider sex as a variable in vaccine immunogenicity studies.

    CAS  PubMed  Google Scholar 

  143. Engler, R. J. et al. Half- versus full-dose trivalent inactivated influenza vaccine: age, dose, and sex effects on immune responses. Arch. Intern. Med. 168, 2405–2414 (2008).

    PubMed  Google Scholar 

  144. Case, L. K. et al. The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res. 23, 1474–1485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    CAS  PubMed  Google Scholar 

  146. Faisal, M., Kim, H. & Kim, J. Sexual differences of imprinted genes' expression levels. Gene 533, 434–438 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank O. Hall and J. Peretz for assistance with tables, A. Pekosz and M. Plebanski for constructive comments on an earlier draft, and three anonymous reviewers who provided feedback that assisted with improving this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabra L. Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, S., Flanagan, K. Sex differences in immune responses. Nat Rev Immunol 16, 626–638 (2016). https://doi.org/10.1038/nri.2016.90

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.90

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing