Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fnn.4156/MediaObjects/41593_2015_Article_BFnn4156_Fig1_HTML.jpg)
References
Lander, E.S. et al. Nature 409, 860–921 (2001).
Venter, J.C. et al. Science 291, 1304–1351 (2001).
Levine, M. & Davidson, E.H. Proc. Natl. Acad. Sci. USA 102, 4936–4942 (2005).
Lee, T.I. & Young, R.A. Cell 152, 1237–1251 (2013).
Visel, A., Rubin, E.M. & Pennacchio, L.A. Nature 461, 199–205 (2009).
Encode Project Consortium. Nature 489, 57–74 (2012).
Roadmap Epigenomics Consortium et al. Nature 518, 317–330 (2015).
Ward, L.D. & Kellis, M. Nat. Biotechnol. 30, 1095–1106 (2012).
GTEx Consortium. Science 348, 648–660 (2015).
Sullivan, P.F., Daly, M.J. & O'Donovan, M. Nat. Rev. Genet. 13, 537–551 (2012).
Cross-Disorder Group of the Psychiatric Genomics Consortium et al. Nat. Genet. 45, 984–994 (2013).
Johnson, M.B. et al. Neuron 62, 494–509 (2009).
Nord, A.S., Pattabiraman, K., Visel, A. & Rubenstein, J.L. Neuron 85, 27–47 (2015).
Shibata, M., Gulden, F.O. & Sestan, N. Trends Genet. 31, 77–87 (2015).
Konopka, G. et al. Neuron 75, 601–617 (2012).
Liao, B.Y. & Zhang, J. Proc. Natl. Acad. Sci. USA 105, 6987–6992 (2008).
Miller, J.A. et al. Nature 508, 199–206 (2014).
Kang, H.J. et al. Nature 478, 483–489 (2011).
Johnson, M.B. et al. Nat. Neurosci. 18, 637–646 (2015).
Darmanis, S. et al. Proc. Natl. Acad. Sci. USA 112, 7285–7290 (2015).
Meyer-Lindenberg, A. & Weinberger, D.R. Nat. Rev. Neurosci. 7, 818–827 (2006).
Insel, T.R. Nature 468, 187–193 (2010).
Lichtenstein, P. et al. Lancet 373, 234–239 (2009).
Wray, N.R. & Gottesman, I.I. Front. Genet. 3, 118 (2012).
Psychiatric GWAS Consortium Bipolar Disorder Working Group. Nat. Genet. 43, 977–983 (2011).
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Nature 511, 421–427 (2014).
Malhotra, D. & Sebat, J. Cell 148, 1223–1241 (2012).
Amaral, D.G., Schumann, C.M. & Nordahl, C.W. Trends Neurosci. 31, 137–145 (2008).
Geschwind, D.H. & State, M.W. Lancet Neurol 14, 1109–1120 (2015).
De Rubeis, S. et al. Nature 515, 209–215 (2014).
Iossifov, I. et al. Nature 515, 216–221 (2014).
Gaugler, T. et al. Nat. Genet. 46, 881–885 (2014).
McCarthy, S.E. et al. Mol. Psychiatry 19, 652–658 (2014).
Fromer, M. et al. Nature 506, 179–184 (2014).
Jiang, Y., Matevossian, A., Huang, H.S., Straubhaar, J. & Akbarian, S. BMC Neurosci. 9, 42 (2008).
Mariani, J. et al. Cell 162, 375–390 (2015).
Evgrafov, O.V. et al. Psychiatr. Genet. 21, 217–228 (2011).
Buenrostro, J.D., Wu, B., Chang, H.Y. & Greenleaf, W.J. Curr. Protoc. Mol. Biol. 109, 21.29 (2015).
Dekker, J., Marti-Renom, M.A. & Mirny, L.A. Nat. Rev. Genet. 14, 390–403 (2013).
Vockley, C.M. et al. Genome Res. 25, 1206–1214 (2015).
Kelly, T.K. et al. Genome Res. 22, 2497–2506 (2012).
del Rosario, R.C. et al. Nat. Methods 12, 458–464 (2015).
Gamazon, E.R. et al. Mol. Psychiatry 18, 340–346 (2013).
Richards, A.L. et al. Mol. Psychiatry 17, 193–201 (2012).
Hause, R.J. et al. Am. J. Hum. Genet. 95, 194–208 (2014).
Degner, J.F. et al. Nature 482, 390–394 (2012).
Bell, J.T. et al. Genome Biol. 12, R10 (2011).
He, X. et al. Am. J. Hum. Genet. 92, 667–680 (2013).
West, A.E. & Greenberg, M.E. Cold Spring Harb. Perspect. Biol. 3, a005744 (2011).
Brennand, K.J. & Gage, F.H. Dis. Model. Mech. 5, 26–32 (2012).
Acknowledgements
The authors would like to acknowledge and thank the tissue donors and their families. We also thank all consortium members for discussions and feedback on this document. The PsychENCODE consortium projects are funded by the US National Institute of Mental Health.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Akbarian, S., Liu, C., Knowles, J. et al. The PsychENCODE project. Nat Neurosci 18, 1707–1712 (2015). https://doi.org/10.1038/nn.4156
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.4156
This article is cited by
-
Quantifying the proportion of different cell types in the human cortex using DNA methylation profiles
BMC Biology (2024)
-
Altered excitatory and inhibitory ionotropic receptor subunit expression in the cortical visuospatial working memory network in schizophrenia
Neuropsychopharmacology (2024)
-
Ultra-low-coverage genome-wide association study—insights into gestational age using 17,844 embryo samples with preimplantation genetic testing
Genome Medicine (2023)
-
Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways
Nature Communications (2023)
-
Integrating GWAS and proteome data to identify novel drug targets for MU
Scientific Reports (2023)