Abstract
To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure–associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure–related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Johnson, T. et al. Blood pressure loci identified with a gene-centric array. Am. J. Hum. Genet. 89, 688–700 (2011).
Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41, 348–353 (2009).
Franceschini, N. et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am. J. Hum. Genet. 93, 545–554 (2013).
Ganesh, S.K. et al. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations. Am. J. Hum. Genet. 95, 49–65 (2014).
Ehret, G.B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
Wain, L.V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).
Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).
Simino, J. et al. Gene–age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am. J. Hum. Genet. 95, 24–38 (2014).
Tragante, V. et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am. J. Hum. Genet. 94, 349–360 (2014).
Wang, Y. et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc. Natl. Acad. Sci. USA 106, 226–231 (2009).
Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).
Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010).
Miall, W.E. & Oldham, P.D. The hereditary factor in arterial blood-pressure. BMJ 1, 75–80 (1963).
Levy, D. et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet. 8 (Suppl. 1), S3 (2007).
Voight, B.F. et al. The Metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8, e1002793 (2012).
Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
Tobin, M.D., Sheehan, N.A., Scurrah, K.J. & Burton, P.R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).
Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).
Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
Kimber, C.H. et al. TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels. Diabetologia 50, 1186–1191 (2007).
Erdmann, J. et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504, 432–436 (2013).
Hirata, Y. et al. Mechanisms of adrenomedullin-induced vasodilation in the rat kidney. Hypertension 25, 790–795 (1995).
Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).
Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP–trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).
Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).
Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).
Segrè, A.V., Groop, L., Mootha, V.K., Daly, M.J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).
Pers, T.H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).
Stergachis, A.B. et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515, 365–370 (2014).
Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 34, 2159–2219 (2013).
Lifton, R., Somlo, S., Giebisch, G. & Seldin, D. Genetic Diseases of the Kidney (Academic Press, 2009).
Coffman, T.M. & Crowley, S.D. Kidney in hypertension: guyton redux. Hypertension 51, 811–816 (2008).
Ghofrani, H.A. et al. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 369, 330–340 (2013).
Penninx, B.W. et al. The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. Int. J. Methods Psychiatr. Res. 17, 121–140 (2008).
Boomsma, D.I. et al. Netherlands Twin Register: from twins to twin families. Twin Res. Hum. Genet. 9, 849–857 (2006).
Visscher, P.M., Benyamin, B. & White, I. The use of linear mixed models to estimate variance components from data on twin pairs by maximum likelihood. Twin Res. 7, 670–674 (2004).
Romanoski, C.E. et al. Network for activation of human endothelial cells by oxidized phospholipids: a critical role of heme oxygenase 1. Circ. Res. 109, e27–e41 (2011).
Koopmann, T.T. et al. Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart. PLoS One 9, e97380 (2014).
Fairfax, B.P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).
Ramasamy, A. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 17, 1418–1428 (2014).
Mägi, R. & Morris, A.P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).
Acknowledgements
We thank all the participants of this study for their contributions. Detailed acknowledgment of funding sources by study is provided in the Supplementary Note.
Author information
Authors and Affiliations
Consortia
Contributions
Analysis group. Design of secondary analyses: G.B.E., T. Ferreira, T.J., A.P.M., P.B.M., C.N.-C. Computation of secondary analyses: G.B.E., T. Ferreira, T.J., A.P.M., P.B.M., C.N.-C. Manuscript writing: A.C., G.B.E., T. Ferreira, T.J., A.P.M., P.B.M., C.N.-C. Study management: P.B.M., C.N.-C.
Cardio-MetaboChip or new GWAS. WGHS. Study phenotyping: P.M.R., D.I.C., L.M.R. Genotyping or analysis: P.M.R., D.I.C., L.M.R., F. Giulianini. Study PI: P.M.R. JUPITER. Study phenotyping: P.M.R., D.I.C., L.M.R. Genotyping or analysis: D.I.C., L.M.R., F. Giulianini. Study PI: P.M.R., D.I.C. deCODE. Study phenotyping: G.B. Genotyping or analysis: G.T. Study PI: K.S., U.T. GoDARTS. Study phenotyping: C.N.A.P., L.A.D., A.D.M., A.S.F.D. Genotyping or analysis: C.N.A.P., L.A.D., A.D.M., M.I.M., C.J.G., N.W.R. Study PI: C.N.A.P., A.D.M. KORA F3/F4. Study phenotyping: A.D., H. Schunkert, J.E. Genotyping or analysis: A.-K.P., M.M.-N., N.K., T.I. Study PI: H.-E.W., A. Peters. GLACIER. Study phenotyping: F.R., G.H. Genotyping or analysis: P.W.F., D. Shungin, I.B., S. Edkins, F.R. Study PI: P.W.F. B58C. Genotyping or analysis: S. Kanoni, K.E.S., Wellcome Trust Case Control Consortium, E.M., T. Ferreira, T.J. Study PI: P.D. MORGAM. Study phenotyping: K. Kuulasmaa, F. Gianfagna, A. Wagner, J. Dallongeville. Genotyping or analysis: M.F.H., F. Gianfagna. Study PI: J.V., J.F., A.E. SardiNIA. Study phenotyping: E.G.L. Genotyping or analysis: E.G.L., O. Meirelles, S. Sanna, R.N., A. Mulas, K.V.T. NFBC1986. Study phenotyping: M.-R.J., S. Sebert, K.-H.H., A.-L.H. Genotyping or analysis: M. Kaakinen, A.-L.H. Study PI: M.-R.J. DESIR. Genotyping or analysis: N.B.-N., L.Y., S.L. Study PI: P.F., N.B.-N., B.B. DILGOM. Study phenotyping: S.M. Genotyping or analysis: K. Kristiansson, M.P., A.S.H. Study PI: V.S. IMPROVE. Study phenotyping: D.B. Genotyping or analysis: R.J.S., K.G. Study PI: A. Hamsten, E. Tremoli. HyperGEN. Study phenotyping: S.C.H., D.C.R. Genotyping or analysis: A.C., V.P., G.B.E. Study PI: S.C.H. FENLAND (MetaboChip). Study phenotyping: R.J.F.L., J. Luan, N.J.W., K.K.O. Genotyping or analysis: R.J.F.L., J. Luan, N.J.W., K.K.O. Study PI: N.J.W. Whitehall II. Study phenotyping: M. Kumari. Genotyping or analysis: M. Kumari, S. Shah, C.L. Study PI: A.D.H., M. Kivimaki. LURIC. Genotyping or analysis: M.E.K., G. Delgado. Study PI: W.M. MESA. Study phenotyping: W.P. Genotyping or analysis: W.P., X.G., J.Y., D.V., K.D.T., J.I.R., Y.-D.C. Study PI: W.P. HUNT2. Study phenotyping: K. Kvaløy, J.H., O.L.H. Genotyping or analysis: A.U.J. Study PI: K.H. FINCAVAS. Genotyping or analysis: T.L., L.-P.L., K.N., M. Kähönen. Study PI: T.L., M. Kähönen. GenNet. Study phenotyping: R.S.C., A.B.W. Genotyping or analysis: A.C., V.P., M.X.S., D.E.A., G.B.E. Study PI: A.C., R.S.C., A.B.W. SCARFSHEEP. Study phenotyping: B.G. Genotyping or analysis: R.J.S. Study PI: A. Hamsten, U.d.F. DPS. Study phenotyping: J. Lindström. Genotyping or analysis: A.U.J., P.S.C. Study PI: J.T., M.U. DR's EXTRA. Study phenotyping: P.K. Genotyping or analysis: A.U.J., M.H. Study PI: R. Rauramaa, T.A.L. FIN-D2D 2007. Genotyping or analysis: A.U.J., L.L.B. Study PI: J. Saltevo, L.M. METSIM. Study phenotyping: H.M.S. Genotyping or analysis: A.U.J., A.S. Study PI: M.L., J.K. MDC-CVA. Study phenotyping: O. Melander. Genotyping or analysis: O. Melander, C.F. Study PI: O. Melander. BRIGHT. Study phenotyping: A.F.D., M.J.B., N.J.S., J.M.C. Genotyping or analysis: T.J., P.B.M. Study PI: M.J.C., A.F.D., M.J.B., N.J.S., J.M.C., P.B.M. NESDA. Study phenotyping: J.H.S. Genotyping or analysis: H. Snieder, I.M.N. Study PI: B.W.P. EPIC (MetaboChip). Study phenotyping: R.J.F.L., J. Luan, N.J.W. Genotyping or analysis: J. Luan, N.J.W. Study PI: N.J.W., K.-T.K. ELY. Study phenotyping: C.L., J. Luan, N.J.W. Genotyping or analysis: C.L., J. Luan, N.J.W. Study PI: N.J.W. DIAGEN. Study phenotyping: J.G., G.M. Genotyping or analysis: A.U.J., G.M. Study PI: P.E.H.S., S.R.B. GOSH. Study phenotyping: P.K.M., N.L.P. Genotyping or analysis: E.I., P.K.M., N.L.P., T. Fall. Study PI: E.I. Tromsø. Study phenotyping: T.W. Genotyping or analysis: A.U.J., A.J.S., N.N. Study PI: I.N.N. ADVANCE. Study phenotyping: T.L.A., C.I. Genotyping or analysis: T.L.A., E.L.S., T.Q. Study PI: T.L.A., T.Q., C.I. ULSAM. Study phenotyping: E.I., J. Sundstrom. Genotyping or analysis: E.I., N.E., J. Sundstrom, A.-C.S. Study PI: J. Sundstrom. PIVUS. Study phenotyping: L. Lind, J. Sundstrom. Genotyping or analysis: L. Lind, N.E., J. Sundstrom, T.A. Study PI: L. Lind, J. Sundstrom. MRC NSHD. Study phenotyping: D.K. Genotyping or analysis: A. Wong, J. Luan, D.K., K.K.O. Study PI: D.K. ASCOT. Study phenotyping: A.V. Stanton, N.P. Genotyping or analysis: T.J., M.J.C., P.B.M., E.P.A.v.I. Study PI: P.S., M.J.C. THISEAS. Genotyping or analysis: L.S.R., S. Kanoni, E.M., G. Kolovou. Study PI: G. Dedoussis, P.D. PARC. Study phenotyping: R.M.K. Genotyping or analysis: K.D.T., E. Theusch, J.I.R., X.L., M.O.G., Y.-D.I.C. Study PI: R.M.K. AMC-PAS. Genotyping or analysis: G.K.H., P.D., E.P.A.v.I. Study PI: G.K.H. CARDIOGENICS. Genotyping or analysis: S. Kanoni, A.H.G. Study PI: P.D., A.H.G., J.E., N.J.S., H. Schunkert.
Secondary analyses. Allele-specific FAIRE. Design of secondary analysis: A.J.P.S. Computation of secondary analysis: A.J.P.S., F.D., P.H. ASAP eQTL. Design of secondary analysis: A.F.-C. Computation of secondary analysis: L. Folkersen, P. Eriksson. CARDIOGENICS eQTL. Computation of secondary analysis: L. Lataniotis. Cardio-MetaboChip design. P.B.M., C.N.-C., T.J., B.F.V., H.M.K. Comprehensive literature review. Design of secondary analysis: P.B.M. Computation of secondary analysis: K.W., P.B.M. DEPICT. Design of secondary analysis: L. Franke, T.H.P., J.N.H. Computation of secondary analysis: T.H.P. DHS and methylation analysis by tissue. Design of secondary analysis: C.J.W. Computation of secondary analysis: E.M.S. DHS and methylation by cell line. Design of secondary analysis: D.I.C. Computation of secondary analysis: D.I.C., F. Giulianini. FHS eSNP. Design of secondary analysis: R. Joehanes. Computation of secondary analysis: R. Joehanes. ICBP SC. C.N.-C., M.J.C., P.B.M., A.C., K.M.R., P.F.O'R., W.P., D.L., M.D.T., B.M.P., A.D.J., P. Elliott, C.M.v.D., D.I.C., A.V. Smith, M. Bochud, L.V.W., H. Snieder, G.B.E. Kidney eQTL. Computation of secondary analysis: H.J.G., S.K.K. MAGENTA. Design of secondary analysis: D.I.C. Computation of secondary analysis: D.I.C. Miscellaneous. Computation of secondary analysis: H. Warren. MuTHER eQTL. Design of secondary analysis: P.D. Computation of secondary analysis: L. Lataniotis, T.-P.Y. NESDA eQTL. Design of secondary analysis: R. Jansen. Computation of secondary analysis: R. Jansen, A.V. NTR eQTL. Design of secondary analysis: R. Jansen. Computation of secondary analysis: R. Jansen, J.-J.H. Study PI: D.I.B. eQTL, EGCUT. Design of secondary analysis: A. Metspalu. Computation of secondary analysis: T.E., A. Metspalu. eQTL, Groningen. Design of secondary analysis: L. Franke. Computation of secondary analysis: H.-J.W., L. Franke. Public eSNP and methylation. Design of secondary analysis: A.D.J., J.D.E. Computation of secondary analysis: A.D.J., J.D.E. PubMed search. Design of secondary analysis: G.B.E. Computation of secondary analysis: G.B.E., L. Lin. WGHS conditional. Design of secondary analysis: D.I.C. Computation of secondary analysis: D.I.C., F. Giulianini, L.M.R.
Lookup of Cardio-MetaboChip variants. HEXA. Genotyping or analysis: Y.J.K., Y.K.K., Y.-A.S. Study PI: J.-Y.L. RACe. Study phenotyping: D. Saleheen, W. Zhao, A.R. Genotyping or analysis: W. Zhao, A.R. Study PI: D. Saleheen. HALST. Study phenotyping: C.A.H. Genotyping or analysis: J.I.R., Y.-D.C., C.A.H., R.-H.C., I.-S.C. Study PI: C.A.H. CLHNS. Study phenotyping: N.R.L., L.S.A. Genotyping or analysis: Y.W., N.R.L., L.S.A. Study PI: K.L.M., L.S.A. GxE/Spanish Town. Study phenotyping: B.O.T., C.A.M., R.W. Genotyping or analysis: C.D.P. Study PI: R.S.C., C.A.M., R.W., T. Forrester, J.N.H. DRAGON. Study phenotyping: W.-J.L., W.H.-H.S., K.-W.L., I.-T.L. Genotyping or analysis: J.I.R., Y.-D.C., E.K., D.A., K.D.T., X.G. Study PI: W.H.-H.S. SEY: study phenotyping: P.B. Genotyping or analysis: M. Bochud, G.B.E., F.M. Study PI: P.B., M. Bochud, M. Burnier, F.P. TUDR: study phenotyping: W.H.-H.S., I.-T.L., W.-J.L. Genotyping or analysis: J.I.R., Y.-D.C., E.K., K.D.T., X.G. Study PI: W.H.-H.S. TANDEM. Study phenotyping: P.B., M. Bochud. Genotyping or analysis: G.B.E., F.M. Study PI: P.B., M. Bochud, M. Burnier, F.P.
Imputed genotypes. FHS. Study phenotyping: D.L. Genotyping or analysis: D.L. Study PI: D.L. ARIC. Study phenotyping: E.B. Genotyping or analysis: G.B.E., E.B., A.C.M., A.C., S.K.G. Study PI: E.B., A.C. RS. Genotyping or analysis: G.C.V., A.G.U. Study PI: A. Hofman, A.G.U., O.H.F. CoLaus. Study phenotyping: P.V. Genotyping or analysis: Z.K. Study PI: P.V. NFBC1966. Study phenotyping: M.-R.J. Genotyping or analysis: P.F.O'R. Study PI: M.-R.J. SHIP. Study phenotyping: R. Rettig. Genotyping or analysis: A.T. CHS. Study phenotyping: B.M.P. Genotyping or analysis: K.M.R. Study PI: B.M.P. EPIC (GWAS). Study phenotyping: N.J.W., R.J.F.L., J. Luan. Genotyping or analysis: N.J.W., J.H.Z., J. Luan. Study PI: N.J.W., K.-T.K. SU.VI.MAX. Study phenotyping: S.H. Genotyping or analysis: S.H., P.M. Study PI: P.M. Amish. Genotyping or analysis: M.E.M. Study PI: A. Parsa. FENLAND (GWAS). Study phenotyping: N.J.W., J. Luan, R.J.F.L., K.K.O. Genotyping or analysis: N.J.W., J. Luan, R.J.F.L., K.K.O. Study PI: N.J.W. DGI. Study phenotyping: C.N.-C. Genotyping or analysis: C.N.-C., G. Kosova. Study PI: C.N.-C. ERF (EUROSPAN). Genotyping or analysis: N.A. Study PI: C.M.v.D. MIGEN. Study phenotyping: S. Kathiresan, R.E. Genotyping or analysis: S. Kathiresan, R.E. Design of secondary analysis: S. Kathiresan, R.E. MICROS. Study phenotyping: P.P.P. Genotyping or analysis: A.A.H. Study PI: A.A.H., P.P.P. FUSION. Genotyping or analysis: A.U.J. Study PI: M. Boehnke, F.S.C., K.L.M., J. Saramies. TwinsUK. Genotyping or analysis: C.M. Study PI: T.D.S. PROCARDIS. Genotyping or analysis: M. Farrall, A.G. Study PI: M. Farrall. BLSA. Study phenotyping: L. Ferrucci. Genotyping or analysis: T.T. Study PI: L. Ferrucci. ORCADES. Study phenotyping: J.F.W. Genotyping or analysis: R.M.F. Study PI: J.F.W. Croatia-Vis. Genotyping or analysis: V.V., C.H. Study PI: V.V., C.H. NSPHS. Genotyping or analysis: S. Enroth. Study PI: U.G. InCHIANTI. Genotyping or analysis: T.T. Study PI: S. Bandinelli. AGES Reykjavik. Study phenotyping: V.G. Genotyping or analysis: A.V. Smith. Study PI: V.G.
Lookup. CARDIoGRAMplusC4D. Genotyping or analysis: P.D. Study PI: J. Danesh, H. Schunkert, T.L.A., J.E., S. Kathiresan, R. Roberts, N.J.S., P.D., H. Watkins. CHARGE cIMT. Genotyping or analysis: C.J.O'D., J.C.B. CHARGE EYE. Genotyping or analysis: T.Y.W., X.S., R.A.J. Study PI: T.Y.W. CHARGE-HF Consortium. Study phenotyping: R.S.V., J.F.F. Genotyping or analysis: H.L., J.F.F. Study PI: R.S.V. CKDGen. Genotyping or analysis: M.G., V.M. COGENT-BP. Study phenotyping: N.F., J.R. Genotyping or analysis: N.F., X.Z., B.J.K., B.O.T., J.R. EchoGen Consortium. Study phenotyping: R.S.V., J.F.F. Genotyping or analysis: H.L., J.F.F. Study PI: R.S.V. KidneyGen Consortium. Study phenotyping: J.C.C., J.S.K., P. Elliott. Genotyping or analysis: W. Zhang, J.C.C., J.S.K. Study PI: J.C.C., J.S.K. MetaStroke. Genotyping or analysis: S. Bevan, H.S.M. NeuroCHARGE. Genotyping or analysis: M. Fornage, M.A.I. Study PI: M.A.I. PROMIS. Study phenotyping: D. Saleheen, W. Zhao, J. Danesh. Genotyping or analysis: W. Zhao. Study PI: D. Saleheen. SEED. Study phenotyping: T.Y.W., C.-Y.C. Genotyping or analysis: E.-S.T., C.-Y.C., C.-Y.C. Study PI: C.-Y.C., T.Y.W. UK Biobank. BP group leaders: M.J.C., P. Elliott. Genotyping or analysis: M.R.B., H. Warren, C.P.C., E.E., H.G.
Corresponding authors
Ethics declarations
Competing interests
I.B. owns stock in Incyte and GlaxoSmithKline. A.C. is a paid member of the Scientific Advisory Board of Biogen Idec. These potential conflicts of interest are managed by the policies of Johns Hopkins University School of Medicine. D.I.C. receives genotyping and collaborative scientific support from Amgen and receives support for genetic analysis from AstraZeneca. J.F.F. worked until 2013 in ErasmusAGE, a center for ageing research across the life course funded by Nestlé Nutrition (Nestec, Ltd), Metagenics, Inc., and AXA. H.J.G. currently works for Illumina. T.J. is an employee of and owns stock in GlaxoSmithKline. B.M.P. serves on the DSMB for a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering Committee for the Yale Open Data Access Project funded by Johnson & Johnson. P.M.R. receives genotyping and collaborative scientific support from Amgen and receives support for genetic analysis from AstraZeneca. N.P. has received financial support from several pharmaceutical companies that manufacture blood pressure–lowering or lipid-lowering agents, or both, and consultancy fees. P.S. has received research awards from Pfizer. M.J.C. is Chief Scientist for Genomics England, a UK government company.
Additional information
A list of members and affiliations appears in the Supplementary Note.
A list of members and affiliations appears in the Supplementary Note.
A list of members and affiliations appears in the Supplementary Note.
Supplementary information
Supplementary Text and Figures
Supplementary Note and Supplementary Figures 1–10. (PDF 22466 kb)
Supplementary Table 1
Individual cohort study information and blood pressure measurement methods. (XLSX 22 kb)
Supplementary Table 2
Genotyping methods. (XLSX 23 kb)
Supplementary Table 3
Data type contribution and participant characteristics. (XLSX 26 kb)
Supplementary Table 4
Meta-analysis stage 4 results. (XLSX 12 kb)
Supplementary Table 5
UK-CardioMetabolic Consortium validation. (XLSX 12 kb)
Supplementary Table 6
Loci identified by GCTA with multiple signals of association. (XLSX 18 kb)
Supplementary Table 7
All SNPs selected by GCTA as independently associated with SBP. (XLSX 29 kb)
Supplementary Table 8
All SNPs selected by GCTA as independently associated with DBP. (XLSX 31 kb)
Supplementary Table 9
List of SNPs at genome-wide significant Cardio-MetaboChip loci for secondary analyses. (XLSX 17 kb)
Supplementary Table 10
Conditional analysis using the WGHS data set. (XLSX 29 kb)
Supplementary Table 11
Summary of Cardio-MetaboChip blood pressure fine-mapping regions. (XLSX 11 kb)
Supplementary Table 12
Ninety-nine percent credible intervals at Cardio-MetaboChip blood pressure fine-mapping regions. (XLSX 17 kb)
Supplementary Table 13
Ninety-nine percent credible causal SNPs at Cardio-MetaboChip blood pressure fine-mapping regions. (XLSX 59 kb)
Supplementary Table 14
eSNP analysis for cell types other than whole blood. (XLSX 15 kb)
Supplementary Table 15
eSNP analysis for whole blood. (XLSX 21 kb)
Supplementary Table 16
Analysis of enrichment of DNase-hypersensitive sites among the blood pressure loci, by cell type. (XLSX 59 kb)
Supplementary Table 17
Tissue categorization for DNase-hypersensitive site analyses. (XLSX 19 kb)
Supplementary Table 18
Analysis of enrichment of DNase-hypersensitive sites among the blood pressure loci, grouping cell types by tissue. (XLSX 13 kb)
Supplementary Table 19
Analysis of enrichment of methylation sites among the blood pressure loci. (XLSX 10 kb)
Supplementary Table 20
Blood pressure SNPs enriched in DHS sites in blood vessels. (XLSX 15 kb)
Supplementary Table 21
MAGENTA analysis. (XLSX 10 kb)
Supplementary Table 22
DEPICT analysis. (XLSX 9 kb)
Supplementary Table 23
FAIRE analysis. (XLSX 14 kb)
Supplementary Table 24
Non-European meta-analysis. (XLSX 74 kb)
Supplementary Table 25
Detailed results of risk score analyses for each SNP. (XLSX 72 kb)
Supplementary Table 26
Genetic blood pressure risk score analysis applied to related cardiovascular phenotypes. (XLSX 9 kb)
Supplementary Table 27
Genes at new blood pressure loci using DEPICT. (XLSX 11 kb)
Supplementary Data
Cardio-MetaboChip blood pressure association statistics (P values). Full results can be obtained via dbGaP. (CSV 8329 kb)
Rights and permissions
About this article
Cite this article
Ehret, G., Ferreira, T., Chasman, D. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48, 1171–1184 (2016). https://doi.org/10.1038/ng.3667
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.3667