Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis

Abstract

Epigenetic mechanisms integrate genetic and environmental causes of disease, but comprehensive genome-wide analyses of epigenetic modifications have not yet demonstrated robust association with common diseases. Using Illumina HumanMethylation450 arrays on 354 anti-citrullinated protein antibody–associated rheumatoid arthritis cases and 337 controls, we identified two clusters within the major histocompatibility complex (MHC) region whose differential methylation potentially mediates genetic risk for rheumatoid arthritis. To reduce confounding factors that have hampered previous epigenome-wide studies, we corrected for cellular heterogeneity by estimating and adjusting for cell-type proportions in our blood-derived DNA samples and used mediation analysis to filter out associations likely to be a consequence of disease. Four CpGs also showed an association between genotype and variance of methylation. The associations for both clusters replicated at least one CpG (P < 0.01), with the rest showing suggestive association, in monocyte cell fractions in an independent cohort of 12 cases and 12 controls. Thus, DNA methylation is a potential mediator of genetic risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential cell counts in identifying rheumatoid arthritis–associated differentially methylated positions (DMPs).
Figure 2: Identification of epigenetically mediated genetic risk factors for rheumatoid arthritis disease.
Figure 3
Figure 4: Genotype-dependent candidate DMPs that mediate genetic risk within the MHC region.
Figure 5: Replication data for ten candidate DMPs that mediate genetic risk in rheumatoid arthritis from sorted monocytes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Feinberg, A.P. & Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer 4, 143–153 (2004).

    Article  CAS  Google Scholar 

  2. Kaminsky, Z.A. et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 41, 240–245 (2009).

    Article  CAS  Google Scholar 

  3. Feinberg, A.P. et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci. Transl. Med. 2, 49ra67 (2010).

    Article  Google Scholar 

  4. Javierre, B.M. et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20, 170–179 (2010).

    Article  CAS  Google Scholar 

  5. Rakyan, V.K. et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 7, e1002300 (2011).

    Article  CAS  Google Scholar 

  6. Bjornsson, H.T., Fallin, M.D. & Feinberg, A.P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20, 350–358 (2004).

    Article  CAS  Google Scholar 

  7. Bjornsson, H.T. et al. Intra-individual change over time in DNA methylation with familial clustering. J. Am. Med. Assoc. 299, 2877–2883 (2008).

    Article  CAS  Google Scholar 

  8. Rakyan, V.K., Down, T.A., Balding, D.J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    Article  CAS  Google Scholar 

  9. Klareskog, L., Catrina, A.I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  Google Scholar 

  10. Scott, D.L., Wolfe, F. & Huizinga, T.W. Rheumatoid arthritis. Lancet 376, 1094–1108 (2010).

    Article  Google Scholar 

  11. Padyukov, L. et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 70, 259–265 (2011).

    Article  Google Scholar 

  12. Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313–1318 (2009).

    Article  CAS  Google Scholar 

  13. Stahl, E.A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  Google Scholar 

  14. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  Google Scholar 

  15. Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. & Alfredsson, L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651–675 (2008).

    Article  CAS  Google Scholar 

  16. Padyukov, L., Silva, C., Stolt, P., Alfredsson, L. & Klareskog, L. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 50, 3085–3092 (2004).

    Article  CAS  Google Scholar 

  17. Mahdi, H. et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat. Genet. 41, 1319–1324 (2009).

    Article  CAS  Google Scholar 

  18. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    Article  CAS  Google Scholar 

  19. Reinius, L.E. et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE 7, e41361 (2012).

    Article  CAS  Google Scholar 

  20. Houseman, E.A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).

    Article  Google Scholar 

  21. Schadt, E.E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  Google Scholar 

  22. Chen, L.S., Emmert-Streib, F. & Storey, J.D. Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol. 8, R219 (2007).

    Article  Google Scholar 

  23. MacKinnon, D.P. & MacKinnon, D. Introduction to Statistical Mediation Analysis (Routledge Academic, 2008).

  24. Millstein, J., Zhang, B., Zhu, J. & Schadt, E.E. Disentangling molecular relationships with a causal inference test. BMC Genet. 10, 23 (2009).

    Article  Google Scholar 

  25. van der Laan, M.J., Dudoit, S. & Pollard, K.S. Multiple testing. Part II. Step-down procedures for control of the family-wise error rate. Stat. Appl. Genet. Mol. Biol. 3 Article14 (2004).

  26. Feinberg, A.P. & Irizarry, R.A. Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107 (suppl. 1), 1757–1764 (2010).

    Article  CAS  Google Scholar 

  27. Hayes, J.D. & Strange, R.C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61, 154–166 (2000).

    Article  CAS  Google Scholar 

  28. Strange, R.C., Jones, P.W. & Fryer, A.A. Glutathione S-transferase: genetics and role in toxicology. Toxicol. Lett. 112–113, 357–363 (2000).

    Article  Google Scholar 

  29. Strange, R.C., Spiteri, M.A., Ramachandran, S. & Fryer, A.A. Glutathione-S-transferase family of enzymes. Mutat. Res. 482, 21–26 (2001).

    Article  CAS  Google Scholar 

  30. Bohanec Grabar, P., Logar, D., Tomsic, M., Rozman, B. & Dolzan, V. Genetic polymorphisms of glutathione S-transferases and disease activity of rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 229–236 (2009).

    CAS  PubMed  Google Scholar 

  31. Yun, B.R., El-Sohemy, A., Cornelis, M.C. & Bae, S.C. Glutathione S-transferase M1, T1, and P1 genotypes and rheumatoid arthritis. J. Rheumatol. 32, 992–997 (2005).

    CAS  PubMed  Google Scholar 

  32. Keenan, B.T. et al. Effect of interactions of glutathione S-transferase T1, M1, and P1 and HMOX1 gene promoter polymorphisms with heavy smoking on the risk of rheumatoid arthritis. Arthritis Rheum. 62, 3196–3210 (2010).

    Article  Google Scholar 

  33. Lundstrom, E. et al. Effects of GSTM1 in rheumatoid arthritis; results from the Swedish EIRA study. PLoS ONE 6, e17880 (2011).

    Article  Google Scholar 

  34. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101 (2008).

    Article  CAS  Google Scholar 

  35. Hao, K., Chudin, E., Greenawalt, D. & Schadt, E.E. Magnitude of stratification in human populations and impacts on genome wide association studies. PLoS ONE 5, e8695 (2010).

    Article  Google Scholar 

  36. Leek, J.T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010).

    Article  CAS  Google Scholar 

  37. Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, e161 (2007).

    Article  Google Scholar 

  38. Kang, E.Y., Ye, C., Shpitser, I. & Eskin, E. Detecting the presence and absence of causal relationships between expression of yeast genes with very few samples. J. Comput. Biol. 17, 533–546 (2010).

    Article  CAS  Google Scholar 

  39. Jaffe, A.E. et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 41, 200–209 (2012).

    Article  Google Scholar 

  40. Thurlings, R.M. et al. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease. PLoS ONE 4, e7865 (2009).

    Article  Google Scholar 

  41. Mueller, R.B. et al. MHC class II expression on myeloid cells inversely correlates with disease progression in early rheumatoid arthritis. Rheumatology (Oxford) 46, 931–933 (2007).

    Article  CAS  Google Scholar 

  42. Ronninger, M. et al. The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls. Genome Med. 4, 2 (2012).

    Article  CAS  Google Scholar 

  43. Casella, G. & Berger, R.L. Statistical Inference (Duxbury Press, 2001).

Download references

Acknowledgements

We thank M. Rosenblum for helpful discussions on the application of statistical mediation methodology. We thank R.A. Irizarry for his contributions to the concepts in this work, his statistical insights on batch effects and helpful comments. We thank E.A. Houseman for codes used for estimating cell proportions. We also thank the EIRA study group18 for contributing invaluable clinical information and biological samples. This work was supported by the US National Institutes of Health Centers of Excellence in Genomic Science, 5P50HG003233 to A.P.F., and by the Swedish Research Council, the Swedish Combine project, the Swedish Strategic Foundations, the AFA Insurance and the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. performed the experiments. Y.L. and M.J.A. analyzed data. L.P. and L.A. performed epidemiological data collection and evaluation. L.P. did sample genotyping and genotype imputation. M.D.F. performed epidemiology analysis and data interpretation, and assisted in experimental design. L.P., M.R., K.S. and E.H. prepared nucleic acids and/or cell sorting. A.R. performed the 450K arrays. M.T. assisted in statistical analysis. J.K., L.R., N.A. and A.S. provided reference normal 450K data from sorted cells for estimating cell proportions. Y.L., M.J.A., L.P., M.D.F., L.K., T.J.E. and A.P.F. conceived the experiments and wrote the paper.

Corresponding authors

Correspondence to Lars Klareskog, Tomas J Ekström or Andrew P Feinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1658 kb)

Supplementary Table 1

Characteristics of the study population (XLSX 9 kb)

Supplementary Table 2

Differential cell type distribution from methylation signature estimation and flow cytometry (XLSX 10 kb)

Supplementary Table 3

RA-associated CpGs (DMPs) (XLSX 4047 kb)

Supplementary Table 4

Genotype-associated DMPs (XLSX 778 kb)

Supplementary Table 5

RA-associated DMPs that are controled by SNPs within the MHC region (XLSX 530 kb)

Supplementary Table 6

SNPs within the MHC region that are associated with both DMPs and RA phenotype (XLSX 348 kb)

Supplementary Table 7

Methylation-mediated genetic risk loci within the MHC region (XLSX 57 kb)

Supplementary Table 8

Genetic risk loci within the MHC region that are associated with methylation variance (XLSX 70 kb)

Supplementary Table 9

Replication on sorted cells (XLSX 61 kb)

Supplementary Table 10

Effect of batch and cell type composition adjustment on differential methylation effect sizes and p-values (XLSX 51 kb)

Supplementary Table 11

DMPs and the genes within 100kb distances (XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Aryee, M., Padyukov, L. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31, 142–147 (2013). https://doi.org/10.1038/nbt.2487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing