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Fig I. Illustration of the relation between admission date, LoS, update time and
snapshot date. For patients discharged before the update time, the (uncensored)
LoS is available. The censored LoS is available only if a patient is discharged
after the snapshot date, but not if the patient left the ICU between the update
time and the snapshot date.

✓ ↯ ✓

Admission LoS Update Time
LoS (overestimated
at snapshot date)

Snapshot date
LoS

(censored)

A. Censoring of LoS in the COVID-19 dataset

Since the COVID-19 pandemic is ongoing, it is likely that the set of patients
in the RISC-19-ICU registry with available LoS has a selection bias towards
shorter LoS. The natural approach to deal with this problem would be to treat
the patients with missing LoS as censored observations with censoring time
the number of days between admission and snapshot date. Unfortunately, this
approach appears to be misleading and overestimates the LoS for the following
reason. The data for each patient in the RISC-19-ICU registry is updated
periodically by the corresponding ICU. We call the date of the last update for a
given patient the update time. If the patient’s LoS in the ICU has terminated
before the update time, then we observe the LoS, if the patient is still in the
ICU at the snapshot date, then the LoS is censored as above. However, there is
the possibility that the patient has left the ICU between the update time and
the shapshot data, and there is no possiblity to see this from the data. Fig I
illustrates this problem, and Fig II shows how many patients are subject to this
issue.

B. Evaluation of probabilistic predictions

Probabilistic predictions should be calibrated and sharp [1]. Calibration refers
to the statistical compatibility of predictions and observations, and there are
several tools available in the literature to assess calibration graphically and with
statistical tests. The most prominent tool are so-called Probability Integral
Transform (PIT) histograms, which are a histogram of F1(y1), . . . , Fn(yn) [2, 3].
Here, (F1, y1), . . . , (Fn, yn) are a generic notation for the available prediction-
observation pairs. Predictions are called probabilistically calibrated if the PIT
histogram is flat, and there are strong arguments that probabilistic calibration is
an essential requirement for probabilistic forecasts [4]. The notion of probabilistic
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Fig II. Patient admission dates and LoS. Dots show the LoS of patients who
already left the ICU before the snapshot date (May 18). Black crosses show the
time between the admission and the snapshot date for patients for which no
discharge time is available in the database.
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calibration has been reintroduced in under the name of D-calibrated in [5].
Probabilistic predictions are called marginally calibrated if (1/n)

∑n
i=1 1{yi ≤

y} = (1/n)
∑n

i=1 Fi(y) for all y ∈ R, that is, the observed frequency of realizations
of Y below any threshold y should be equal to the average prediction of this
frequency [4].

Calibrated probabilistic predictions are not necessarily informative. Therefore,
the authors of [1] postulated the principle that probabilistic predictions should
maximize sharpness subject to calibration. Sharpness is a property of the forecasts
only and it refers to how concentrated the predictive distribution is. A forecast
is sharper if it yields shorter prediction intervals. Proper scoring rules allow to
assess sharpness and calibration of a forecast simultaneously [6]. A widely used
example is the Continuous Ranked Probability Score (CRPS) which is defined as

CRPS(F, y) =

∫ ∞
−∞

(F (t)− 1{y ≤ t})2d t.

for a CDF F and a real number y [7]. A forecast procedure is better the lower
the average realized CRPS

1

n

n∑
k=1

CRPS(Fk, yk).

The significance of differences in forecast performance can be assessed by a
Diebold-Mariano test [8].
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Fig III. PIT histograms for the ECDF and the DIM predictions.
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C. Diagnostic plots for calibration of DIM pre-
dictions

Fig III shows the PIT histograms for the ECDF predictions and the DIM
predictions.

D. Figures on LoS by regions

Figs IV, V, VI summarise the COVID-19 dataset and the corresponding predic-
tions split up by regions in Switzerland.
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Fig IV. (a) Empirical distribution of LoS of COVID-19 patients in the regions
NE and WT. (b) QQ-plot of the empirical distributions.
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Fig V. Empirical LoS distributions of COVID-19 patients and corresponding
DIM forecasts for the regions NE and WT. The DIM forecasts are as in Fig 2 in
the article.
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Fig VI. DIM forecasts for COVID-19 patients, depending on region.
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