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Supplementary Methods1

Model Equations. Transmission dynamics are given by an SEAIR model, modified to take population adherence to2

NPIs and school/workplace closure into account, and divided into age classes i ∈ [1, 16], where each age class contains3

a 5 year cohort, except for the oldest age group which comprises the ages 75 and over. The model equations are:4
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Parameter values are defined in Table S1. The vaccination dynamics are an impulsive process applied each day,13

described below. S1
i is the number of unvaccinated susceptible individuals in age group i, S2

i is the number of14

susceptible individuals in age group i who have been vaccinated once (without being immunized), and S3
i is the15

number of susceptible individuals in age group i who have been vaccinated twice while remaining susceptible. Ei(t) is16

the number of exposed but not infectious individuals in age group i. Iai
(t) is the number of asymptomatic infectious17

individuals in age group i and Isi
(t) is the number of symptomatic infectious individuals in age group i. Ri(t) is the18

number of Removed (recovered, vaccinated, and deceased) individuals in compartment i.19

The variable D(t) ∈ [0, 1] in the model equation dD(t)/dt = Ω(D(t)) represents the public health authority’s20

reaction to the prevalence of ascertained cases and it evolves according to:21
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[9]22

This represents closure being eventually triggered when ascertained cases exceed a threshold T , and being lifted when23

cases drop below that threshold again.24

The proportion x of individuals who practice NPIs such as mask wearing, handwashing, and physical distancing,25

starts off at x(0) = 0.01 and evolves as:26

dx
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= κx(1 − x)

( 16∑
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)
+ pul(1 − 2x) [10]27

where κ is the social learning rate, c is the incentive to not practice NPIs, and αi is the fraction of total cases (Ia + Is)28

that are reported, also known as the ascertainment rate. The pul term is a phenomenological term that represents29
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the effects of social heterogeneity and influence from external populations that prevents the system from remaining30

arbitrarily close to x = 0 or x = 1 for unrealistic periods of time. These equations describe a population where31

individual sample other individuals at some time rate and switch between adherence and non-adherence to NPIs with32

a probability proportional to the expected gain in utility
∑16
i=1 αi(Iai

+ Isi
) − cx. We refer the reader to existing33

literature for details on the derivation of this equation (1–5).34

Cij(t) is the average number of contacts per day and consists of contacts at workplaces, schools, households, and35

other locations, which vary depending on government shutdown policies as well as indivdual adherence to NPIs like36

physical distancing and mask use:37

Cij(t) = CW
ij (t) + CS

ij(t) + (1 − εPx)(CO

ij + C
H

ij ) [11]38

The contacts in each of the aforementioned places can vary as follows. At workplaces, which can be closed by public39

health authorities:40
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where C
W

ij is the normal (non-pandemic) number of contact-hours per day between individuals of age i and j at the42

workplace (6), and C
W

ij (1 − D(t)εP ) is the reduced rate under workplace closure efficacy 0 < εW < 1 and closure level43

D(t). Lower than perfect efficacy may stem either from occasional use of workplace for critical needs or non-authorized44

access, workplaces that remain open because they provide essential services, etc. tWclose and tWopen are the times of45

closing and re-opening workplaces, respectively. Similarly, for schools we have:46
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All other places of exposure are governed by social processes with imperfect ability of public health authorities to48

enforce mandages, and hence are governed by voluntary population adherence to NPIs such as mask use and physical49

distancing as per the εPx(t) term in the equation, where εP is efficacy of individual adoption of NPIs. In principle,50

contact hours spent at home should increase as workplaces and schools are closed, but we assume that infection51

probabilities will saturate rapidly with contact hours in the home. Each of the conditional functions in equations52

(12,13), are represented in the model as a smoothed step function with a steep slope, and we restrict them between 053

and 1 if the smoothing process would cause the closure level D(t) to exceed 1.0.54

Vaccination process. Each day, the total number of individuals vaccinated is equal to
∑16
i=1 φi

Si(t)
Ni

, and the number55

of individuals immunized is
∑16
i=1 vi

Si(t)
Ni

on account of imperfect vaccination. The factor Si(t)
Ni

represents vaccination56

of each person with equal probability, so the probability of vaccinating a susceptible person decreases with the fraction57

of susceptible individuals remaining in the population. If there are less than φi individuals in group S1
i , then the58

remainder of the vaccine is spread evenly among the remaining non-vaccinated groups. Individuals who are vaccinated59

but not immunized due to imperfect efficacy are moved to the corresponding S2
i . If there are remaining vaccines after60

all individuals in S1 (for i = 1..16) have been vaccinated, then the same process is conducted on S2
i . We assume that61

a course of vaccination will not be administered to a person more than twice.62

Case under-ascertainment. Case under-ascertainment is represented by the variables αi, i ∈ [1, 16], which are63

interpolated from eight variables α′
i, i ∈ [1, 8] used to fit the ascertainment, where each α′

i corresponds to two64

consecutive age groups. We use quadratic interpolation functions to interpolate each α′
i to the respective αi, to reduce65

the dimensionality of the parameter space. We multiply the infections in each age group i by the corresponding αi66

after the simulation is finished.67

Baseline transmission rate. We can compute r as a function of the next-generation matrix, M = −ΘΣ−1 (7), where68

Θ and Σ are defined as in equations 14,15, and so M is a function of R0, σ, γa, γs, η, C(t), and N . These matrices come69

from the rate at which infected individuals enter and leave the infection compartments when the system is linearized70

about the Ia = 0, Is = 0 equilibrium. The basic reproduction ratio, R0, of the infection is the spectral radius of M ,71
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written ρ(M). We can pull r out of this expression and write r in terms of the other parameters: r = R0
ρ(M) .72
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Disease progression parameters. The case fatality rate by age were obtained from Public Health Ontario data (8).76

Transition rates for the duration of the asymptomatic infectious period and the proportion of symptomatic cases were77

obtained from COVID-19 epidemiological literature (9–11).78

Initial conditions. The point t = 0 was chosen to be the day at which the province of Ontario recorded more than 5079

cases, March 10th 2020, to reduce the effects of stochasticity in the early case counts. Let the number of observed80

cases of COVID-19 in age group i on March 10th 2020 be ωi. We use the age distribution of ωi to determine the81

age distribution for Ia(t) + Is(t). The true number of cases that day is ωi/αi, where αi is the ascertainment rate82

of cases in group i. Since we do not know the actual number of active cases, Iai
(t) + Isi

(t) at t = 0, we assume83

the number of active cases is equal to the true number of incident cases multiplied by a constant I0, which is also84

treated as a model variable to be fitted. Therefore, Isi(0) = ηI0
ωi

αi
and Iai(0) = (1 − η)I0

ωi

αi
. We assumed that85

S1
i (0) = Ni, so the total number of susceptible, unvaccinated individuals

∑16
i=1 S1

i (0) is the population of the region,86

and S2
i (0) = 0, S3

i (0) = 0, Ei(0) = 0, Ri(0) = 0 for all i. Lastly, we assumed that at t = 0, only 1% of individuals are87

physical distancing, so x(0) = 0.01, and that D(0) = 0.88

Particle filtering. We calibrated the model with data from Ontario, Canada. Since the workplace closure opening and
closing rates, k1 and k2, are not coupled with the model, we fit a step function of the form

f(t) = εW
(
tanh k1(t − tWclose) − tanh k2(t − tWclose)

)
to the "workplaces_percent_change_from_baseline" field of the Google mobility data (12) for the province.89

We applied a particle filtering approach using intervals around selected parameters. Intervals used for sampling90

appear in Table S1. We fit the cumulative cases across all age groups at each day to the number of cases registered91

by Public Health Ontario on that day (13), and the decrease in contact-hours to the decrease in the "Retail and92

Recreation" hours recorded by Google mobility (12). The posterior distribution of the parameters was estimated93

with the approximate Bayesian computation scheme described in (14), with uniform priors and 500 particles, using94

the KissABC library for the Julia language. The acceptance threshold was chosen to given acceptable variation and95

evaluation time.96

To reduce the size of the parameter space while conducting the particle filtering, we down-sampled the ascertainment97

and susceptibility vectors to represent two age classes with one ascertainment rate and susceptibility factor, respectively.98

These resulting vectors of eight real numbers each were interpolated with quadratic polynomials to give sixteen99

ascertainment rates and susceptibility factors used in the model (see Figures ??). The ascertainment rate for the100

youngest four age groups was bounded between 0.05 and 0.2, and ascertainment rate for the oldest age group (75+)101

was bounded from below by 0.8. We bounded the age-specific susceptibility factors ρi between 0.5 and 2. The phase102

of the seasonal susceptibility was chosen to be −30, which corresponds to a peak in early February of each year if103

s < 0, or early august if s > 0 (depending on the exact start date of the simulation).104
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Optimized vaccination strategy. We compared four vaccination strategies in our baseline analysis: uniform vaccination,105

oldest first, youngest first, and the contact-matrix based strategy. To construct a strategy that is better than these106

four, we began a local optimization with each of these aforementioned strategies as initial points. In particular, we107

used the method of moving asymptotes (15) for constrained nonlinear local optimization available in NLOpt (16), a108

popular nonlinear optimization library. The method was run until convergence with each of the initial points, and109

the best of the resulting local optimums taken. Although a global optimization algorithm is potentially able to find110

better strategies given enough time, we found that for reasonable execution times, the multistart method we used111

here achieves similar optimal solutions. The objective function ran the model for five years, and minimized the total112

number of deaths over that time.113
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Table S1. Parameter definitions, values, particle filtering ranges, and sources.

Parameter Meaning Value [Range] Source

Ni Population in age group i 0 − 4: 790169; 5 − 9: 789190 (17), interpolated
10 − 14: 790803; 15 − 19: 887072
20 − 24: 1003052; 25 − 29: 1015105
30 − 34: 1009090; 35 − 39: 969949
40 − 44: 926440; 45 − 49: 938990
50 − 54: 1027557; 55 − 59: 10416495
60 − 64: 892016; 65 − 69: 741824
70 − 74: 557203; 75+: 204431

µi COVID-19 case fatality rate in age group i 0 − 4: 0.002; 5 − 9: 0.001 (8), interpolated
10 − 14: 0.0005; 15 − 19: 0.0005
20 − 24: 0.0010; 25 − 29: 0.002
30 − 34: 0.0031; 35 − 39: 0.0048
40 − 44: 0.0078; 45 − 49: 0.0135
50 − 54: 0.0253; 55 − 59: 0.0455
60 − 64: 0.0784; 65 − 69: 0.1378
70 − 74: 0.2623; 75+: 0.5815

Cij contact rate between class i and j see Supp. Methods (18)
R0 basic reproduction rate of infection calibrated, [1.5, 2.5] (12, 13, 19)
r probability of transmission per contact derived from next generation matrix (7)
σ inverse of latent period calibrated, [0.3, 2.0] (9–13)
γa inverse of infectious period for asymptomatic individuals 0.25/day (9–11)
γs inverse of infectious period for symptomatic individuals calibrated, [0.0, 0.05] (9–13)
αi Ascertainment rate of class i calibrated, [0.01, 1.0] see Supp. Methods
ρi Susceptibility of class i calibrated, [0.5, 2.0] see Supp. Methods
η fraction of symptomatic infections 0.15 (20)
εP efficacy of physical distancing calibrated, [0.3, 0.9] (12, 13)
κ social learning rate calibrated, [1000, 16000] (12, 13)
s seasonality calibrated, [−0.3, 0.3] (12, 13)
φ seasonality phase −30 days see Supp. Methods
vi Vaccine efficacy for individuals in group i 90% (21)
I0 Initial ratio of active cases to incident cases calibrated, [1, 3] (12, 13)
ψi Number of vaccines allocated for individuals in group i each day varied by scenario
T Threshold in active reported cases for school/workplace closure varied by scenario
k1 Workplace shutdown rate 0.31432 fitted, see Supp. Methods
k2 Workplace opening rate 0.0056 fitted, see Supp. Methods
c Incentive not to distance calibrated,[0.0, 0.5] (12, 13)
pul social heterogeneity parameter calibrated, [0.00, 0.05] (12, 13)
tsclose School shutdown date March 14th, 2020 (22)
tsopen School opening date September 17th, 2020 (23)
twclose Work shutdown date March 17th, 2020 (24)
twopen Work opening date June 12th, 2020 (24)
εw Work shutdown effectiveness 0.86 fitted, see Supp. Methods
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DRAFTFig. S1. Posterior distributions on inferred parameters for age-specific susceptibility (lower left), age-specific ascertainment (lower right) and non-age structured
model parameters (top) for baseline model. See Model overview and Supplementary Methods for details.
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Fig. S2. Empirical data of cumulative infections due to COVID-19 by age and posterior predictions. See Model overview and Supplementary Methods for details.
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Fig. S3. Age distribution of vaccination under the contact-based strategy. See Model overview and Supplementary Methods for details.
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Fig. S4. Social and epidemic dynamics for early vaccine availability and high vaccination rate. (a) Active ascertained COVID-19 cases, (b) proportion x of the
population practicing NPIs, (c) Intensity of school and workplace closure, (d) percentage of population with natural or vaccine-derived immunity versus time. T = 2.0,
ψ0 = 4.5% per week, vaccine available in January 2021. Other parameters are in Table S1.
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Fig. S5. Mortality reductions under various values of T and ψ0, January vaccine availability. Violin plots of the percent reduction in mortality under the four vaccine
strategies, relative to no vaccination, as a function of the vaccination rate ψ0, for January 2021 availability. Horizontal lines represent median values of posterior model
projections. Other parameter values in Table S1.

10



DRAFT

Fig. S6. Mortality reductions under various values of T and ψ0, July vaccine availability. Violin plots of the percent reduction in mortality under the four vaccine
strategies, relative to no vaccination, as a function of the vaccination rate ψ0, for July 2021 availability. Horizontal lines represent median values of posterior model projections.
Other parameter values in Table S1.
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T=0.5 T=1.0 T=1.5

T=2.0 T=2.5

Fig. S7. Age distribution of vaccine under the optimal strategy, for various values of T and ψ0 (horizontal axis), for (a) January and (b) July 2021 vaccine
availability.
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Fig. S8. Sensitivity analysis for the scenario where population adherence to NPIs is constant over time. Subpanels are parameter planes for January and July
availability showing the vaccination strategy that reduces COVID-19 mortality the most as a function of T andψ0 (left) and the corresponding posterior parameter distributions
for the refitted parameters (right). Other parameter values as in Table S1.
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Fig. S9. Sensitivity analysis for the scenario where infection susceptibility is constant across ages. Subpanels are parameter planes for January and July availability
showing the vaccination strategy that reduces COVID-19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior parameter distributions for the
refitted parameters (right). Other parameter values as in Table S1.
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Fig. S10. Sensitivity analysis for the scenario in the absence of seasonality. Subpanels are parameter planes for January and July availability showing the vaccination
strategy that reduces COVID-19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior parameter distributions for the refitted parameters (right).
Other parameter values as in Table S1.
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Fig. S11. Sensitivity analysis for the scenario where vaccine efficacy is 50% in older individuals and 90% for everyone else. Subpanels are parameter planes for
January and July availability showing the vaccination strategy that reduces COVID-19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior
parameter distributions for the refitted parameters (right). Other parameter values as in Table S1.
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Fig. S12. Sensitivity analysis for the scenario of increased efficacy of NPIs in the second wave to account for more widespread use of masks. Subpanels are
parameter planes for January and July availability showing the vaccination strategy that reduces COVID-19 mortality the most as a function of T and ψ0 (left) and the
corresponding posterior parameter distributions for the refitted parameters (right). Other parameter values as in Table S1.

17



DRAFTFig. S13. Sensitivity analysis for the scenario where R0 = 2.3. Subpanels are parameter planes for January and July availability showing the vaccination strategy
that reduces COVID-19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior parameter distributions for the refitted parameters (right). Other
parameter values as in Table S1.
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DRAFTFig. S14. Sensitivity analysis for the scenario of 50% vaccine efficacy for everyone. Subpanels are parameter planes for January and July availability showing the
vaccination strategy that reduces COVID-19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior parameter distributions for the refitted
parameters (right). Other parameter values as in Table S1.

19



DRAFTFig. S15. Sensitivity analysis for the scenario when individuals are tested for seropositivity before being administered a vaccine. Subpanels are parameter planes
for January and July availability showing the vaccination strategy that reduces COVID-19 mortality the most as a function of T and ψ0 (left) and the corresponding posterior
parameter distributions for the refitted parameters (right). Other parameter values as in Table S1.
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