Supplementary Material

for

Deep Immune Profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19

Vella, Giles, Baxter, Oldridge et al

Supplementary Figure Legends

Supplemental Table 1

Supplemental Table 2

Supplemental Table 3

Supplemental Figure 1

Supplemental Figure 2

Supplemental Figure 3

Supplemental Figure 4

Supplemental Figure 5

Supplemental Figure 6

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1 - Innate immune compartment in MIS-C is broadly comparable to Pediatric COVID-19

(A) White blood cell (WBC) counts in pediatric cohorts at time of draw. (B) Clinically determined cell counts in pediatric cohorts at time of draw. (C) Gating strategy and representative flow cytometry plots for immune populations from whole blood stain. (D) Frequencies of eosinophils, neutrophils and immature granulocytes across all cohorts. (E) Monocyte and subset frequencies across all cohorts. (F) Dendritic cell (DC) and subset frequencies across all cohorts. (ABDEF) Each dot represents an individual patient or subject, with adult HD in grey circles, adult COVID-19 in shades of mauve indicated by disease severity score, Ped COVID-19 in blue circles, with ARDS patients in dark blue, and MIS-C in green triangles. (AB) Normal clinical laboratory reference ranges for healthy pediatric subjects are indicated in grey shading. (DFE) Significance determined by unpaired Wilcoxon test between Ped COVID-19 and MIS-C groups only, indicated by: * p<0.05, or P value shown.

Supplemental Figure 2 - T cell proliferation in MIS-C is greater than in COVID-19

(A) Gating scheme and representative flow cytometry plots for CD4 and CD8 T cell populations, from PBMC staining. (B) Frequencies of nonnaive(nn) CD4 T cell memory populations. (C) Frequencies of nnCD8 T cell memory populations. (D) Representative flow cytometry plots and quantification of Ki67+ nnCD4 T cells. (E) Representative flow cytometry plots and quantification of Ki67+ nnCD4 T cells. (F) Distribution of T cell memory subsets within HLA-DR+CD38+ nnCD4 (left) and CD8 T cells (right). (G) Distribution of T cell memory subsets within Ki67+ nnCD4 (left) and CD8 T cells (right). (B-G) Each dot represents an individual patient or subject, with adult HD in grey circles, adult COVID-19 in shades of mauve indicated by disease severity score, Ped COVID-19 in blue circles, with ARDS patients in dark blue, and MIS-C in green

triangles. (**BCDE**) Significance determined by unpaired Wilcoxon test between Ped COVID-19 and MIS-C groups only, indicated by: ** p<0.01, or P value shown.

Supplemental Figure 3 - NK and CD8 MAIT cell activation in MIS-C is greater than in COVID-19

(**A**) Representative flow cytometry plots and quantification of HLA-DR and CD38 single and double-expressing NK cells from the whole blood panel. (**B**) Representative flow cytometry plots and quantification of HLA-DR and CD38 single and double-expressing CD8 MAIT from the whole blood panel. (**AB**) Each dot represents an individual patient or subject, with adult HD in grey circles, adult COVID-19 in shades of mauve indicated by disease severity score, Ped COVID-19 in blue circles, with ARDS patients in dark blue, and MIS-C in green triangles. Significance determined by unpaired Wilcoxon test between Ped COVID-19 and MIS-C groups only, indicated by: * p<0.05, or P value shown.

Supplemental Figure 4 - Vascular patrolling CX3CR1+ populations in MIS-C are uniquely proliferative in MIS-C

(A) Quantification of Ki67+ population within CX3CR1- and CX3CR1+ nnCD4 T cells. (B) Quantification of Ki67+ population within CX3CR1- and CX3CR1+ nnCD8 T cells. (C) Representative gating of Ki67+ population within CX3CR1- and CX3CR1+ nnCD8 T cells. (AB) Each dot represents an individual patient or subject, with adult HD in grey circles, adult COVID-19 in shades of mauve indicated by disease severity score, Ped COVID-19 in blue circles, with ARDS patients in dark blue, and MIS-C in green triangles. Significance determined by unpaired Wilcoxon test between Ped COVID-19 and MIS-C groups and determined by paired Wilcoxon test between CX3CR1- and CX3CR1+ within pediatric groups, indicated by: * p <0.05, ** p<0.01, *** p<0.001 or P value shown.

Supplemental Figure 5 - A transition towards B cell memory subsets from naive is associated with IFNg in both MIS-C and pediatric COVID-19

(A) Representative gating for naive B cells and memory subsets. (B) Frequencies of naive B cells. (C) Frequencies of memory B cell subsets from the nonnaive(nn)B cell population. (D) Spearman correlation for indicated cytokines with frequencies of B cell subsets. Top panel indicates correlations in the combined pediatric cohort, lower two panels represent correlations within the Ped COVID-19 and MIS-C respectively. Spearman's Rank Correlation coefficient (ρ) is indicated by square size and heat scale; significance indicated by: * p<0.05, ** p<0.01, *** p<0.001. (E) Spearman correlation for indicated cytokines with frequencies with HLA-DR+CD38+ and Ki67+ populations of nnCD4 and nnCD8 T cells, statistics and panels as in D. (F) Representative histogram of Eomes expression by PB for an adult HD (grey), Ped COVID-19 (blue) and MIS-C (green) and quantification of frequencies of Eomes+ PB. Significance determined by unpaired Wilcoxon test between pediatric cohorts indicated by: **** p<0.001.</p>

Supplemental Figure 6 - Total and activated cTfh frequencies are not associated with PB responses in either pediatric cohort.

(**A**) Representative flow cytometry plot and quantification for cTfh. (**B**) Representative flow cytometry plot and quantification for activated cTfh. (**CDE**) Frequencies of PB versus cTfh from nnCD4 T cells (**C**), activated cTfh from nnCD4 T cells (**D**), activated cTfh from total cTfh (**E**). Non-parametric trend lines (Sen-Theil) with Spearman's Rank Correlation coefficient (ρ) and associated P value shown. (**F**) Representative flow cytometry plot and quantification for both frequency of CXCR5+ nnCD4 T cells and CXCR5 GMFI on nnCD4 T cells. Significance determined by unpaired Wilcoxon test comparing adult HD to both pediatric cohorts and indicated by: * p <0.05, ** p<0.01, *** p<0.001 or P value shown. (**A-F**) Each dot represents an individual patient or subject, with adult HD in grey circles, adult COVID in shades of mauve indicated by disease severity score, Ped COVID-19 in blue circles, with ARDS patients in dark

blue, and MIS-C in green triangles. (**AB**) Significance determined by unpaired Wilcoxon test between pediatric cohorts.

Supplemental Figure 7 - Features of CD4 T cell activation start to normalize over time, coincident with treatment and recovery from disease.

(A) Selected CD4 T cell features over days since admission in Ped COVID-19 (left) and MIS-C subjects (right). Black lines connect repeat draws for individual subjects. For MIS-C, paired t-test P value is shown for the three subjects with repeat draws. Grey shading indicates the derived central 95% adult HD reference interval. (B) Flow cytometry plots for HLA-DR+CD38+ nnCD4 for MIS-C patients with repeat draws. (C) Flow cytometry plots for Ki67+ nnCD4 for MIS-C patients, as in (B). (A) Each dot represents an individual patient with Pediatric COVID-19 in blue circles (ARDS patients in dark blue) and MIS-C in green triangles.

	Pediatric COVID-19		MIS-C	
Demographics	Value (% or Range)*	N**	Value (% or Range)*	N**
Age (Years)	14 [0.15-18]	16	9 [5.00-17]	14
Sex (F/M)	8 (50%) / 8 (50%)	16	7 (50%) / 7 (50%)	14
BMI (Age-Matched Percentile)	65 [1-99]	16	92 [5-99]	14
Race (African-American/Caucasian)	8 (53%) / 7 (47%)	15	4 (31%) / 9 (69%)	13
Medical History				
Obesity	2 (12%)	16	5 (36%)	14
Diabetes Mellitus	1 (6%)	16	0 (0%)	14
Symptomatic	13 (81%)	16	14 (100%)	14
Coinfection	5 (31%)	16	1 (7%)	14
Disease Type (COVID-19 non-ARDS				
/ COVID-19 with ARDS / MIS-C)	12 (75%) / 4 (25%) / 0 (0%)	16	0 (0%) / 0 (0%) / 14 (100%)	14
Treatment				
Hydroxychloroquine	1 (6%)	16	0 (0%)	14
Remdesevir	4 (29%)	14	1 (11%)	9
Convalescent Plasma	2 (12%)	16	0 (0%)	14
Tociluzimab	3 (19%)	16	0 (0%)	14
Vasoactive Medication	8 (50%)	16	9 (64%)	14
Intravenous Immunoglobulin	1 (6%)	16	14 (100%)	14
Intravenous Immunoglobulin				
Before First Draw Date	0 (0%)	1	11 (79%)	14
Steroids	6 (38%)	16	13 (93%)	14
Steroids Before First Draw Date	6 (100%)	6	10 (77%)	13
Laboratory Results				
Hemoglobin, 1st Research Draw	10.3 [7.4-14.8]	15	9.3 [7.6-11.8]	14
Platelet Count, 1st Research Draw	170 [13-581]	15	152 [70-537]	14
Platelet Count, Nadir	140 [37-578]	16	134 [33-194]	14
White Blood Cell Count, 1st				
Research Draw	10.0 [1.1-24.2]	15	11.0 [2.2-29.8]	14
Polymorphonuclear Cell Count,				
Absolute, 1st Research Draw	7.8 [0.2-21.3]	15	10.3 [2.0-25.8]	14
Lymphocyte Count, Absolute, 1st				
Research Draw	1.8 [0.4-5.3]	15	0.9 [0.1-5.7]	14
Monocyte Count, Absolute, 1st				
Research Draw	0.5 [0.0-1.9]	15	0.2 [0.0-1.4]	14
Eosinophil Count, Absolute, 1st				
Research Draw	0.0 [0.0-0.3]	15	0.0 [0.0-0.4]	14
Basophil Count, Absolute, 1st				
Research Draw	0.0 [0.0-0.1]	15	0.0 [0.0-0.1]	14
Lymphocyte Count, Absolute, Nadir	0.9 [0.1-2.8]	16	0.4 [0.1-1.5]	14
Sodium, Nadir	137 [130-144]	15	131 [126-140]	14
D-Dimer, Peak	1.9 [0.2-37.4]	10	4.9 [1.2-48.0]	13
Ferritin, Peak	217 [60-16973]	7	892 [253-3868]	13
Lactate Dehydrogenase, Peak	2874 [564-15390]	5	864 [457-2761]	12
Troponin, Peak	0.1 [0.0-1.8]	4	0.6 [0.0-7.4]	13
Procalcitonin, Peak	17.62 [0.07-200.00]	8	10.04 [0.24-200.00]	11
Non-Cardiac C-Reactive Protein,			_	
Peak	21.4 [0.7-60.1]	13	26.2 [6.8-40.0]	14

*Values are expressed as counts (with percent of total) for discrete data or as medians [with range] for continuous data. **N is the number of patients with non-missing annotation for each variable.

Supplementary Table S1: Patient Characteristics

VENDOR	CAT#	ANTIBODY/DYE and TARGET	CLONE	DILUTION
BD OptiBuild	740298	BUV395 mouse anti-human CD45RA	HI100	800
BD Horizon	612943	BUV496 mouse anti-human CD8	RPA-T8	400
BD Horizon	612916	BUV563 mouse anti-human CD19	SJ25C1	200
BD OptiBuild	751572	BUV615 mouse anti-human CD16	3G8	200
BD Horizon	612969	BUV661 mouse anti-human CD38	HIT2	400
BD Horizon	612829	BUV737 mouse anti-human CD27	L128	100
BD Horizon	612905	BUV805 mouse anti-human CD20	2H7	800
Biolegend	329920	BV421 mouse anti-human CD279 (PD-1)	EH12.2H7	100
BD Horizon	566138	BV480 mouse anti-human IgD	IA6-2	50
Tombo	13-0870- T500	Ghost Dye™ Violet 510	NA	400
Biolegend	300436	BV570 mouse anti-human CD3	UCHT1	25
Biolegend	356520	BV605 mouse anti-human CD138 (Syndecan-1)	MI15	25
Biolegend	305642	BV650 mouse anti-human CD95 (Fas)	DX2	100
BD Horizon	563163	BV711 mouse anti-human CD21	B-ly4	800
BD Horizon	566355	BV750 mouse anti-human CD4	SK3	20000
BD Horizon	564041	BV786 mouse anti-human HLA-DR	G46-6	100
BD Horizon	564624	BB515 rat anti-human CD185 (CXCR5)	RF8B2	50
BD Horizon	566437	BB700 rat anti-human CD197 (CCR7)	3D12	50
BD Biosciences	CUSTOM	BB790 Strepavidin	NA	400
Biolegend	341617	Biotin rat anti-human CX3CR1	2A9-1	100
Miltenyi	130-120- 716	PE recombinant anti-human TOX	REA473	50
Invitrogen	61-4877- 42	PE-eFluor610 mouse anti-human EOMES	WD1928	100
Invitrogen	GRB18	PE-Cy5.5 mouse anti-human Granzyme B	GB11	2000
Biolegend	644824	PE-Cy7 mouse anti-human T-bet	4B10	800
ThermoFisher	15-9949- 82	PE-Cy5 hamster anti-human CD278 (ICOS)	C398.4A	50
CellSignalingTechnology	6709S	AF647 rabbit anti-human TCF1/TCF7 C63		100
BD Horizon	561277	AF700 mouse anti-human Ki-67	B56	200
Biolegend	328230	APC/Fire750 anti-human CD39	A1	50

Supplementary Table 2: Panel for Peripheral Blood Mononuclear Cell Flow Cytometric Staining

VENDOR	CAT#	ANTIBODY/DYE and TARGET	CLONE	DILUTION
BD Horizon	564071	BUV395 mouse anti-human Ki67	B56	200
BD Horizon	564804	BUV496 mouse anti-human CD8	RPA-T8	500
BD Horizon	565702	BUV563 mouse anti-human CD45RA	HI100	500
BD Horizon	565069	BUV661 mouse anti-human CD38	HIT2	400
BD Horizon	564385	BUV737 mouse anti-human CD25	2A3	200
BD Horizon	565515	BUV805 mouse anti-human CD3	UCHT1	125
Biolegend	329920	BV421 mouse anti-human CD279 (PD-1)	EH12.2H7	83.3
BD Horizon	566141	BV480 mouse anti-human CD14	MP9	500
Invitrogen	L34957	LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit	NA	15000
Biolegend	318330	BV570 mouse anti-human CD56	HCD56	200
BD Horizon	562845	BV605 mouse anti-human HLA-DR	G46-6	250
Biolegend	302828	BV650 mouse anti-human CD27	O323	200
Biolegend	302044	BV711 mouse anti-human CD16	3G8	666.7
BD OptiBuild	747111	BV750 rat anti-human CD185 (CXCR5)	RF8B2	500
Biolegend	302240	BV785 mouse anti-human CD19	HIB19	125
BD Horizon	555401	FITC mouse anti-human CD15	HI98	50
BD OptiBuild	746472	BB700 mouse anti-human CD103	Ber-ACT8	500
BD Biosciences	CUSTOM	BB790 mouse anti-human CD4	SK3	1250
BD OptiBuild	746472	PE mouse anti-human CD123	9F5	400
BD Horizon	562397	PE-CF594 mouse anti-human CD127	HIL-7R-M21	200
Biolegend	310908	PE-Cy5 mouse anti-human CD69	FN50	500
eBioscience	35-0114-82	PE-Cy5.5 mouse anti-human CD11c	N418	100
Biolegend	354912	PE-Cy7 mouse anti-human CD21	BU32	2000
BD Horizon	550968	APC mouse anti-human CD161	DX12	10
BD Horizon	560566	AF700 mouse anti-human CD45	HI30	83.3
Biolegend	353212	APC-Cy7 mouse anti-human CD197 (CCR7)	G043H7	66.7

Supplementary Table 3: Lineage Panel for Whole Blood Flow Cytometric Staining

Ped COVID-19 Non-ARDSARDS

▲ MIS-C

Ki67