Appendix

Figures and Tables

Appendix Table 1. V. cholerae isolates selected for sequencing.

Isolate name	BioSample	Country	State or Region	Collection Date	Serotype		
	Accession						
CMR_VC_06	SAMN16213376	Cameroon	North	27-Jun-18	Inaba		
CMR_VC_07	SAMN16213377	Cameroon	North	18-May-18	Inaba		
CMR_VC_14	SAMN16213378	Cameroon	North	22-Aug-18	Inaba		
CMR_VC_16	SAMN16213379	Cameroon	North	20-Jul-18	Inaba		
CMR_VC_22	SAMN16213380	Cameroon	North	28-Aug-18	Inaba		
CMR_VC_28	SAMN16213381	Cameroon	North	10-Sep-18	Inaba		
CMR_VC_29	SAMN16213382	Cameroon	Centre	10-Jul-18	Inaba		
CMR_VC_30	SAMN16213383	Cameroon	Centre	27-Jul-18	Inaba		
CMR_VC_31	SAMN16213384	Cameroon	Littoral	4-Sep-18	Inaba		
CMR_VC_33	SAMN16213385	Cameroon	Littoral	16-Sep-18	Inaba		
CMR_VC_34	SAMN16213386	Cameroon	Littoral	17-Sep-18	Inaba		
CMR_VC_44	SAMN16213387	Cameroon	North	2-Apr-19	Inaba		
CMR_VC_48	SAMN16213388	Cameroon	North	22-Dec-18	Inaba		
CMR_VC_50	SAMN16213389	Cameroon	North	6-Mar-19	Inaba		
CMR_VC_56	SAMN16213390	Cameroon	North	29-Mar-19	Inaba		
CMR_VC_57	SAMN16213391	Cameroon	North	13-Mar-19	Inaba		
NER_003_2018	SAMN16213392	Niger	Maradi	07-Jul-18	Inaba		
NER_004_2016	SAMN16213393	Niger	Dosso	21-Oct-16	Inaba		
NER_004_2018	SAMN16213394	Niger	Maradi	07-Jul-18	Inaba		
NER_005_2018	SAMN16213395	Niger	Maradi	07-Jul-18	Inaba		
NER_023_2018	SAMN16213396	Niger	Zinder	02-Sep-18	Inaba		
NER 024 2018	SAMN16213397	Niger	Zinder	02-Sep-18	Inaba		
NER_028_2011	SAMN16213398	Niger	Maradi	10-Mar-11	Ogawa		
NER 055 2011	SAMN16213399	Niger	Niamey	04-Jun-11	Ogawa		
NER 071 2011	SAMN16213400	Niger	Tillabéry	08-Jun-11	Ogawa		
NER_088_2011	SAMN16213401	Niger	Maradi	10-Mar-11	Ogawa		
NER_109_2011	SAMN16213402	Niger	Tillabéry	14-Jun-11	Ogawa		
NER 116 2011	SAMN16213403	Niger	Tillabéry	22-Aug-11	Ogawa		
NER_132_2012	SAMN16213404	Niger	Tillabéry	26-Mar-12	Ogawa		
NER_205_2011	SAMN16213405	Niger	Tillabéry	2011	Ogawa		
NER_211_2018	SAMN16213406	Niger	(Unknown)	2018	Inaba		
NGA_001_2019	SAMN16213407	Nigeria	Bayelsa	6-Apr-19	Inaba		
NGA_002_2019	SAMN16213408	Nigeria	Bayelsa	6-Apr-19	Inaba		
NGA_016_2019	SAMN16213409	Nigeria	Adamawa	15-Jun-19	Inaba		
NGA 148 2019	SAMN16213410	Nigeria	Adamawa	7-Aug-19	Non-O1		
NGA 201 2018	SAMN16213411	Nigeria	Borno	12-Sep-18	Inaba		
NGA 205 2018	SAMN16213412	Nigeria	Borno	13-Sep-18	Inaba		
NGA 206 2018	SAMN16213413	Nigeria	Borno	12-Sep-18	Inaba		
NGA 220 2018	SAMN16213414	Nigeria	Borno	19-Sep-18	Inaba		
NGA 235 2018	SAMN16213415	Nigeria	Katsina	19-Sep-18	Inaba		
NGA 236 2019	SAMN16213416	Nigeria	Katsina	20-Sep-18	Inaba		
NGA 247 2018	SAMN16213417	Nigeria	Niger	20-Sep-18	Inaba		
NGA 248 2018	SAMN16213418	Nigeria	Niger	20-Sep-18	Inaba		
NGA 252 2019	SAMN16213419	Nigeria	Adamawa	1-Sep-19	Non-O1		
NGA 255 2018	SAMN16213420	Nigeria	Kebbi	25-Sen-18	Inaba		
NGA 263 2018	SAMN16213421	Nigeria	Kebbi	11-Oct-18	Inaba		
	C						

Appendix Table 2. Sequencing metrics for V. cholerae O1 genomes.

Isolate name	Input (ng)	Reads	Filtered Reads	Median depth	% Genome
CMR_VC_06	547	207,688	39,833	189	98.49
CMR_VC_07	730	181,223	34,798	190	98.52
CMR_VC_14	864	239,145	35,697	190	98.66
CMR_VC_16	682	161,542	36,632	189	98.50
CMR_VC_22	701	162,693	45,977	188	98.38
CMR_VC_28	672	227,665	35,486	189	98.53
CMR_VC_29	629	197,979	35,954	191	98.40
CMR_VC_30	514	202,379	34,450	191	98.66
CMR_VC_31	869	201,198	38,790	188	98.65
CMR_VC_33	562	183,289	34,638	189	98.28
CMR_VC_34	557	225,793	36,562	187	98.64
CMR_VC_44	571	220,076	37,075	189	98.56
CMR_VC_48	281	214,665	39,616	188	98.65
CMR_VC_50	878	191,549	43,362	188	98.64
CMR_VC_56	763	148,347	37,772	190	98.43
CMR_VC_57	696	214,238	38,543	190	98.61
NER_003_2018	1000	507,925	53,801	189	98.67
NER_004_2016	NR	755,430	46,495	191	98.67
NER_004_2018	NR	547,395	39,958	192	98.50
NER_005_2018	1000	417,310	73,504	188	98.70
NER_023_2018	1000	569,906	50,011	190	98.71
NER_024_2018	NR	432,581	41,829	191	98.51
NER_028_2011	100	810,648	68,630	189	98.66
NER_055_2011	NR	564,991	48,850	190	98.67
NER_071_2011	1000	606,046	79,913	187	98.69
NER_088_2011	869	581,959	57,664	188	98.67
NER_109_2011	1000	574,962	60,997	187	98.67
NER_116_2011	NR	328,397	40,535	169	98.33
NER_132_2012	NR	435,457	38,870	191	98.64
NER_205_2011	672	609,444	67,305	188	98.71
NER_211_2018	1000	404,931	73,957	187	98.69
NGA_001_2019	931	255,456	31,260	189	98.37
NGA_002_2019	806	237,071	44,708	187	98.57
NGA_016_2019	1000	247,802	52,779	187	98.68
NGA_201_2018	1000	230,992	44,679	187	98.69
NGA_205_2018	845	227,730	47,009	179	98.65
NGA_206_2018	662	207,186	42,548	178	98.66
NGA_220_2018	1000	189,506	36,753	188	98.43
NGA_235_2018	835	212,584	38,367	191	98.46
NGA_236_2019	898	222,086	44,815	186	98.65
NGA_247_2018	1000	149,028	41,192	187	98.54
NGA_248_2018	811	270,077	41,048	186	95.65
NGA_255_2018	893	242,740	32,161	191	98.48
NGA_263_2018	514	264,190	51,864	186	98.67

NR, not recorded. Percent genome, fraction of the N16961 reference genome covered by at least 100x read depth.

Appendix Table 3. Quinolone susceptibility and mutations in the quinolone-resistance determining regions of DNA gyrase and topoisomerase IV in *Vibrio cholerae* O1.

Isolate name	Disc Diffusion		Mutations								
	Nalidixic acid	Ciprofloxacin	GyrA			ParC Gy			GyrB	GyrB	
			S83	S171	S202	S412	S85	T142	D159	V665	
CMR_VC_06	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_07	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_14	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_16	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_22	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_28	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_29	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_30	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_31	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_33	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_34	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_44	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_48	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_50	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_56	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
CMR_VC_57	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_003_2018	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_004_2016	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_004_2018	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_005_2018	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_023_2018	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_024_2018	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_028_2011	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_055_2011	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_071_2011	Resistant	Susceptible	I	Α	Α	R	L	S	E	Ι	
NER_088_2011	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_109_2011	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_116_2011	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_132_2012	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NER_205_2011			I	Α	Α	R	L	S	E	I	
NER_211_2018	Resistant	Susceptible	I	Α	Α	R	L	S	E	I	
NGA_001_2019		Susceptible	I	Α	Α	R	L	S	E	I	
NGA_002_2019			I	Α	Α	R	ND	S	E	I	
NGA_016_2019		Susceptible	I	Α	Α	R	L	S	E	I	
NGA_201_2018		Susceptible	I	Α	Α	R	L	S	E	I	
NGA_205_2018			I	Α	Α	R	ND	S	E	I	
NGA_206_2018			I	Α	Α	R	ND	S	E	I	
NGA_220_2018		Susceptible	I	A	Α	R	L	S	E	I	
NGA_235_2018		Susceptible	I	A	A	R	L	S	E	I	
NGA_236_2019			I	A	A	R	ND	S	E	I	
NGA_247_2018		Susceptible	I	A	A	R	L	S	E	l	
NGA_248_2018		Susceptible	I	A	A	R	L	S	E	I	
NGA_255_2018		Susceptible	I	A	A	R	L	S	E	I	
NGA_263_2018			I	A	A	R	ND	S	E	I	

S: Serine; I: Isoleucine; L: Leucine; A: Alanine; E: Glutamate; --: Not tested; ND: Not Determined. No mutations in *parE* genes were observed compared to the reference peptide sequence (susceptible). The two non-O1 genomes (NGA_148_2019 and NGA_252_2019) were not included in this analysis.

Appendix Table 4. Phenotypic antibiotic resistance profile versus genotypic profile.

Isolate	E	Beta-lactar	n	Quinolone		Phenicol		Polymyxin			
	varG	AMC	AMP	CRP	NAL	CIP	catB9	CHL	almG	PMB	CST
CMR_VC_06	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_07	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_14	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_16	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_22	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_28	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_29	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_30	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_31	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_33	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_34	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_44	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_48	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_50	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_56	Pr	R		Pr	R	S	Pr	S	Pr	R	R
CMR_VC_57	Pr	R		Pr	R	S	Pr	S	Pr	R	R
NER_003_2018	Pr	R		Pr	R	S	Pr		Pr		
NER_004_2016	Pr	R		Pr	R	S	Pr		Pr		
NER_004_2018	Pr	R		Pr	R		Pr		Pr		
NER_005_2018	Pr	R		Pr	R	S	Pr		Pr		
NER_023_2018	Pr	R		Pr	R	S	Pr		Pr		
NER_024_2018	Pr	R		Pr	R		Pr		Pr		
NER_028_2011	Pr	R		Pr	R	S	Pr		Pr		
NER_055_2011	Pr	R		Pr	R	S	Pr		Pr		
NER_071_2011	Pr	R		Pr	R	S	Pr		Pr		
NER_088_2011	Pr	R		Pr	R	S	Pr		Pr		
NER_109_2011	Pr	R		Pr	R	S	Pr		Pr		
NER_116_2011	Pr	R		Pr	R	S	Pr		Pr		
NER_132_2012	Pr	R		Pr	R	S	Pr		Pr		
NER_205_2011	Pr	R		Pr	R	S	Pr		Pr		
NER_211_2018	Pr	R		Pr	R	S	Pr		Pr		
NGA_001_2019	Pr		R	Pr	R	S	Pr	S	Pr		
NGA_002_2019	Pr		I	Pr	R	S	Pr	S	Pr		
NGA_016_2019	Pr		I	Pr	R	S	Pr	S	Pr		
NGA_201_2018	Pr		I	Pr	R	S	Pr	S	Pr		
NGA_205_2018	Pr		I	Pr	R	S	Pr	S	Pr		
NGA_206_2018	Pr		R	Pr	R	S	Pr	S	Pr		
NGA_220_2018	Pr		I	Pr	R	S	Pr	S	Pr		
NGA_235_2018	Pr		I	Pr	R	S	Pr	S	Pr		
NGA_247_2018	Pr		I	Pr	R	S	Pr	S	Pr		
NGA_248_2018	Abs		I	Pr	R	S	Pr	S	Abs		
NGA_255_2018	Pr		R	Pr	R	S	Pr	S	Pr		

Pr: Gene present; Abs: Gene absent; R: Resistant isolate; S: Susceptible isolate; I: Intermediate; --: Not tested; AMC: amoxicillin-clavulanic acid; AMP: ampicillin; NAL: nalidixic acid; CHL: chloramphenicol; PMB: polymyxin B; CST: colistin. All samples had *tet(34)* present and were susceptible to tetracycline; all samples had *farA* present and were not tested for antibacterial free fatty acids. The following samples were not tested and thus not included in this analysis: NGA_236_2019, NGA_263_2018, NGA_148_2019 and NGA_252_2019.

Data availability

Raw data for all sequenced isolates is available under NCBI BioProject accession: PRJNA616029.

Sample collection and cholera confirmation

V. cholerae isolates were collected from clinically confirmed cholera cases in Cameroon, Niger and Nigeria between 2011 and 2019 (**Appendix Table 1**). In all three countries, suspected cholera stools were cultured on TCBS medium. Phenotypic identification of *V. cholerae* colonies was based on morphology, motility, and biochemical characteristics (positive oxidase, saccharose, indole and gelatinase). *V. cholerae* isolates were confirmed with agglutination tests with anti-O1 or anti-O139 serum (WHO antisera & Denka Seiken Agglutinating Sera Vibrio cholerae Antisera Set).

DNA extraction and quantification

DNA extraction was performed at Centre Pasteur du Cameroun (Yaounde, Cameroun), Centre de Recherche Médicale et Sanitaire (Niamey, Niger), and at National Reference Laboratory (NRL; Nigeria Centre for Disease Control, Abuja, Nigeria). Confirmed *V. cholerae* isolates were cultured on selective TCBS, MH and/or HCK agar plates and incubated at 37°C overnight. In all countries, *V. cholerae* DNA was extracted following the standard protocol from the Qiagen QIAamp DNA Mini Kit with a final elution volume of 200µL. Extracted DNA from *V. cholerae* isolates were stored in 1.5 mL Eppendorf tubes at 4°C or at room temperature until quantification at NRL. DNA concentrations were measured with the Qubit Fluorometer 4.0 (Thermo Fisher) using the dsDNA HS assay standard protocol. Input concentrations for each isolate are recorded in **Appendix Table 2**.

Oxford Nanopore library construction and sequencing

Library preparation and sequencing was performed at the NRL or at Johns Hopkins University (Baltimore, Maryland, United States). In both locations, quantified, extracted DNA was diluted to 1000ng in 48μ L input material, as required by the SQK-LSK109 library preparation kit from Oxford Nanopore. For samples with a concentration below 20ng/µL, 48μ L of extracted DNA was used, regardless of the final amount (<1000ng).

DNA repair and end-prep was performed with 2μ L NEBNext FFPE DNA Repair Mix, 3.5μ L NEBNext FFPE DNA Repair Buffer, 3μ L Ultra II End-Prep Reaction Mix, and 3.5μ L Ultra II End-Prep Enzyme Buffer (New England Biolabs). The reaction was incubated at 20°C for 20 minutes and then 65°C for 10 minutes, and then purified with 1x AMPure XP beads (Beckman Coulter) and eluted in 25μ L Elution Buffer (Promega). A unique 2.5μ L Native Barcode (Oxford Nanopore EXP-NBD104) and 25μ L Blunt/TA Ligase Master Mix (New England Biolabs) were added to dA-tailed DNA and the reaction mixture was incubated for 30 minutes at room temperature. As before, the reaction was purified with 1x AMPure XP beads. The purified DNA was eluted in 10μ L Elution Buffer. Equimolar amounts of 6-9 isolates were pooled to an approximate total DNA amount of 1000ng, and the pool was diluted to 65 μ L in Elution Buffer. The barcoded pool was added to 5 μ L Adapter Mix II (Oxford Nanopore EXP-NBD104), 20 μ L NEBNext Quick Ligation Reaction Buffer (New England Biolabs), and 10μ L Quick T4 DNA Ligase (New England Biolabs). The reaction was incubated at room temperature for 30 minutes and purified with 0.5x AMPure XP beads, using Long Fragment Buffer (Oxford Nanopore SQK-LSK109) instead of ethanol in the wash steps. The final library was eluted in 15μ L Elution Buffer and quantified using the Qubit Fluorometer 4.0 to confirm the process had been successful.

For sequencing, 190ng pooled final library was diluted to 12μ L in Elution Buffer and combined with 37.5μ L Sequencing Buffer and 25.5μ L Loading Beads (Oxford Nanopore SQK-LSK109) before loading onto a primed R9.4.1 Oxford Nanopore MinION flowcell. For each sequencing run, the MinION was run for 48 hours using an offline-capable version of MinKNOW made available by Oxford Nanopore Technologies specifically for this project.

All sequencing files were basecalled using Guppy version 3.0.3 with the flip-flop model (dna_r9.4.1_450bps_fast.cfg). Adapters were removed from reads and reads were demultiplexed into individual samples with Porechop (16). Filtlong (https://github.com/rrwick/Filtlong) was used with the following options to reduce file size and filter out low quality sequencing reads: '--keep_percent 90 -- target_bases 800000000.' The resulting filtered FASTQ files were used as input for all subsequent analyses, including assembly.

Reference-based genome assembly

Reference-based assembly was performed with nanopolish version 0.11.1 (17) using the seventh pandemic strain N16961 as a reference (accession: AE003852/AE003853). Briefly, reads were indexed with nanopolish, then mapped to the reference with minimap2 version 2.17 (18), then sorted and indexed with samtools version 1.10 (19). Variants to the reference genome were then called with nanopolish, and bcftools version 1.9 (20) was used to filter out variants with less than 75% support and sites with less than 100x coverage. A custom Python3 script was used to create consensus genomes from the VCF files, keeping only sites with at least 100x coverage. The full reference-based genome assembly pipeline for *V. cholerae* is publicly available at: https://github.com/HopkinsIDD/minion-vc.

Maximum likelihood estimation

A maximum likelihood tree was generated on a multiple sequence alignment of the genomes from Cameroon, Niger, and Nigeria as well as 1280 previously-published *V. cholerae* whole genome sequences (**Appendix Table 5**) (1,2,11). Recombinant sites were masked as previously described (1) (see https://figshare.com/s/d6c1c6f02eac0c9c871e for masking sites) and using Gubbins version 2.3.4 (21). The maximum likelihood tree was generated on the resulting masked SNP alignment using IQ-TREE version 1.6.10 (22) with a GTR substitution model and 1000 bootstrap iterations. The tree was rooted on A6 (accession: ERR025382). Trees were visualized in FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).

Vibrio cholerae typing

Reads from each isolate were mapped to reference sequences *ctxA* (accession: AF463401), *wbeO1* (accession: KC152957), and *wbfO139* (accession: AB012956), as described in Greig et al (13). Reads were mapped using minimap2 version 2.17 (18) and then sorted with samtools version 1.10 (19). The number of reads mapping at each reference gene site was counted using samtools.

Antibiotic susceptibility assays

Antibiotic susceptibility testing of *V. cholerae* isolates were done by disc diffusion on MH agar plates at Centre Pasteur du Cameroun, Centre de Recherche Médicale et Sanitaire, and NRL. The following antibiotics were tested for resistance: amoxicillin/clavulanic acid, nalidixic acid, polymyxin, tetracycline, ciprofloxacin, and chloramphenicol. The interpretation of resistance/susceptibility profiles was done according to the CASFM 2007 guidelines for Enterobacteriaceae.

Antibiotic resistance gene detection

Genes associated with antibiotic resistance were detected in two ways: first, by using the software abricate (https://github.com/tseemann/abricate) with the NCBI (23) and CARD (24) databases. And second, by translating the nucleotide sequences on the EMBOSS (25) website and aligning the resulting translations to target genes downloaded from <u>https://pubmlst.org/vcholerae/</u> and <u>https://www.ncbi.nlm.nih.gov/</u> with the CLUSTALW (26) website. Resistance to quinolones was determined by comparing the assemblies to reference strains, as described in previous studies (27–29).

References Cited in Appendix

16. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom. 2017 Oct;3(10):e000132.

17. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015 Aug;12(8):733–5.

18. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 Sep 15;34(18):3094–100.

19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078–9.

20. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011 Nov 1;27(21):2987–93.

21. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015 Feb 18;43(3):e15.

22. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015 Jan;32(1):268–74.

23. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob Agents Chemother [Internet]. 2019 Nov;63(11). Available from: http://dx.doi.org/10.1128/AAC.00483-19

24. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and modelcentric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017 Jan 4;45(D1):D566– 73.

25. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000 Jun;16(6):276–7.

26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–80.

27. Chien J-Y, Chiu W-Y, Chien S-T, Chiang C-J, Yu C-J, Hsueh P-R. Mutations in gyrA and gyrB among Fluoroquinolone- and Multidrug-Resistant Mycobacterium tuberculosis Isolates. Antimicrob Agents Chemother. 2016 Apr;60(4):2090–6.

28. Zhou Y, Yu L, Li J, Zhang L, Tong Y, Kan B. Accumulation of mutations in DNA gyrase and topoisomerase IV genes contributes to fluoroquinolone resistance in Vibrio cholerae O139 strains. Int J Antimicrob Agents. 2013 Jul;42(1):72–5.

29. Divya MP, Sivakumar KC, Sarada Devi KL, Remadevi S, Thomas S. Novel multiple mutations in the topoisomerase gene of Haitian variant Vibrio cholerae O1. Antimicrob Agents Chemother. 2014 Aug;58(8):4982–3.