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1 Infection-age structured SIR model

As for SARS-CoV-2 there is evidence that probability of making an effective contact

between an infector and a susceptible subject depends on the infector’s time since

infection [He20], we use the infection-age structured SIR model. Migration, fertility

and mortality of non-diseased people plays a minor role in the simulated period of 60

days. Thus, demography of the background host is ignored. Similar to the conventional

SIR model (without infection age), the population is partitioned into three states, the

susceptible state, the infected and the removed state. The initial letters of the three

states give the model’s name SIR. The removed state comprises people recovered and

deceased from the infected state. The numbers of the people in the susceptible and

the removed states at time t are denoted by S(t) and R(t), respectively. Furthermore,

let i(t, τ) denote the density of infected people at time t and duration τ since infection

(i.e., the infection age), such that the number I(t) of infected at t is

I(t) =

∫ ∞
0

i(t, τ)dτ. (1)

The transmission rate of the infected with infection age τ at time t is β(t, τ) and the

removal rate from the infectious stage is γ(τ). The rate γ comprises mortality as well

as remission.
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The SIR model and the rates β and γ controlling the transitions between the states is

shown in Figure (1).

Figure 1: SIR model. The transition rates β and γ depend on the calendar time t and

the infection-age τ . The number of people in the respective states Susceptible,

Infectious and Removed are given by S, i, and R.

We can formulate the following model equations for the infection-age SIR model

[Ina17]:

dS(t)

dt
= −λ(t)S(t) (2)(

∂

∂t
+

∂

∂τ

)
i(t, τ) = −γ(τ) i(t, τ) (3)

dR(t)

dt
=

∫ ∞
0

γ(τ) i(t, τ). (4)

The incidence rate λ in Eq. (2) is given by

λ(t) =

∫ ∞
0

β(t, τ) i(t, τ)dτ

and is usually called force of infection [Ina17].

System (2) – (4) is accompanied with initial conditions

S(0) = S0 (5)

i(t, 0) = λ(t)S(t) (6)

i(0, τ) = i0(τ) (7)

i(0, 0) = S0

∫ ∞
0

β(0, τ) i0(τ)dτ (8)
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with positive S0 and integrable i0. For later use, we additionally assume that i(t,∞) :=

limτ→∞ i(t, τ) = 0. Condition (8) is called coupling equation and guarantees that

system (2) – (4) is well-defined [Che16].

Detailed discussion of Equations (2) – (4) with initial conditions (5) – (8) can be found

in [Ina17, Chapter 5.3]. In [Ina17, Chapter 5.5] we also find that the age-structured

SIR model is a generalization of the frequently used SEIR model.

Using the definition

Γ (τ) := exp

(
−
∫ τ

0

γ(σ)dσ

)
, (9)

the effective reproduction number Reff(t) is given by

Reff(t) = S(t)

∫ ∞
0

β(t, τ)Γ (τ)dτ, (10)

[Nis09, Eq. (22),(23)].

2 On the numerical solution of the infection-age SIR

model

Assumed i(t, τ) has to be calculated on a rectangular grid (tm, τn) = (m × δh, n ×

δh), m = 0, . . . ,M, n = 0, . . . , N, as depicted in Figure 2. The grid points are

assumed to be equidistant in t- and τ -direction with distance δh > 0. A practical

strategy for solving Equations (2) – (4) with initial conditions (5) – (8) is given by the

following algorithm:

1. Calculate i(tm, τn) = i0(τn − tm)Γ (τn) for all n ≥ m. These are the incidence

densities at the grid points located on and above the diagonal of the grid (on

and above the dashed line in Figure 2).

2. Given that i(tm, τn) have been calculated on and above the diagonal, set ` := 0

and calculate λ(t`+1) and S(t`+1) to determine i(t`+1, 0).

3. Calculate i(t`+1+k, τk), k = 1, 2, . . . . The grid points (t`+1+k, τk) are the points

on a subdiagonal. We have i(t`+1+k, τk) = i(t`+1, 0)Γ (τk).
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4. Set ` := ` + 1 and repeat steps 2 to 4 until the incidence density i has been

calculated on all points (tm, τn) m = 0, . . . ,M, n = 0, . . . , N, on the grid.

Figure 2: Rectangular grid representing calendar time t (abscissa) and infection-age τ

(ordinate). The grid point (tm, τn) above the main diagonal (dashed line) is

highlighted.

3 Details of calculating the four epidemiologic measures

3.1 Cumulative case counts

The cumulative case count CCC(t) up to time t is the sum of incident cases until day

t:

CCC(t) =

t∑
s=1

Fs.

Accordingly, the observed cumulative case count, CCC(o)(t) is defined as

CCC(o)(t) =

t∑
s=1

F (o)
s .
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3.2 Incidence rate

As usual, the incidence rate is defined as the number of incident cases Ft over the

population at risk. The size of population at risk is the number of susceptibles St.

Compared to the number S(t) defined via Equations (2) – (4) an initial conditions (5)

– (8), St is an daily average of S(t). Similarly, the observed incidence rate is defined via

F
(o)
t over the associated population at risk. The size of this population at risk is S

(o)
t ,

which may not be exactly the same as St. For large populations (i.e., large S+ I+R),

we can assume that difference is negligible and St ≈ S
(o)
t . Thus, for calculating the

relative error E of the incidence rate, we chose to calculate and present E =
F

(o)
t −Ft

Ft
.

3.3 Effective reproduction number Reff

We use the Fraser-method to estimate the instantaneous reproduction number Reff.

The underlying estimation equation is

Reff(t) =
Ft∑J

j=0 wjFt−j
,

where wj are weights with 0 ≤ wj ≤ 1, j = 0, ..., J based on the generation time

distribution [Fra07, Eq. (9)]. For estimation of these weights we have (empirically)

chosen J = 9 and wj = 0, for j = 0, 1, 2, w3 = 6/64, wj = 10/64, for j = 4, . . . , 8, and

w9 = 8/64.

Obviously, the estimation method for Reff(t) uses data from the J = 9 preceding days

t− 9, t− 8, . . . , t, the earliest day with an available estimate for Reff(t) is day t = 10.

3.4 Doubling times

As described in the main text, the doubling time ∆ at time t is defined by

2× CCC(t) = CCC
(
t+ ∆(t)

)
. (11)

For estimating ∆(t), the cumulative case count CCC(t) at day t is modelled by fitting

a linear regression line to the logarithmized case counts of the J = 9 previous days,
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Table 1: Parameters used in the simulation

Parameter Meaning Remark Source

β Transmission assumed to be a product of two

rate functions β(t, τ) = βt(t)× βτ (τ)

βt factor of β mimics a lockdown, chosen such that [Lav20]

depending on t Reff drops from > 1 to < 1 (cf. left

part of Figure 1 in the main text)

βτ factor of β follows a Gamma distribution with [He20]

depending on τ shape 2 and rate .25 ⇒ modal

value of 4 and mean 8 (see right part

of Figure 1 in the main text)

γ Removal rate Asymptotics similar to βτ [He20]

i.e., to the points (
t− j, log

(
CCC(t− j)

))
, j = 0, . . . , J.

Assumed the associated regression line at day t reads as at + bt × t, then an easy

calculation shows that the doubling time ∆(t) is given by ∆(t) = log(2)
bt

.

As the estimation method for ∆(t) uses data from the J = 9 preceding days, the

earliest day with an estimate is t = 10.

4 Choice of the parameters for mimicing the

SARS-CoV-2 pandemic

We use the parameters as shown in Table 1 to mimic the spread of the virus in the

hypothetical population. The transmission rate β is assumed to be a product of two

factors βτ and βt. Figure 1 of the main text shows the factors βt and βτ .
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5 Relative errors for the whole simulation period

Figure 3 shows the relative errors of the epidemiological measures cumulative case

count CCC, incidence, effective reproduction number Reff and doubling time ∆ over

the whole simulation period (days 0 to 60) in the four scenarios. A small distance to

the horizontal line at value 0 (solid line) is advantageous. The farther away from the

horizontal line at value 0, the higher is the relative error in absolute terms. We see that

the effective reproduction number and the doubling times outperform the cumulative

case count and the incidence.
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Figure 3: Relative errors E of the four epidemiological measures from day 0 to day 60

in the different scenarios A to D. The closer to the horizontal line E=0, the

better the measure performs in terms of bias.
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6 Source code

Source code for running the simulation (including solving the age-structured SIR

model) can be found as an additional supplement.
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