1 Supplementary Information for

2	Sex differences in innate anti-viral immune responses to respiratory viruses
3	
4	Eteri Regis ^{1#} , Sara Fontanella ^{1#} , Lijing Lin ² , Rebecca Howard ² , Sadia Haider ¹ , John A. Curtin ³ , Michael R.
5	Edwards ¹ , Magnus Rattray ² , Angela Simpson ³ , Adnan Custovic ¹ †, Sebastian L. Johnston ^{1*} †
6	
7	¹ National Heart and Lung Institute, Imperial College London, United Kingdom
8	² Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
9	³ Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health,
10	Manchester Academic Health Sciences Centre, University of Manchester and University Hospital of South
11	Manchester NHS Foundation Trust, Manchester, UK
12	
13	*To whom correspondence should be addressed: Sebastian L Johnston, Professor of Respiratory
14	Medicine & Allergy, National Heart and Lung Institute, Imperial College London, Norfolk Place, London
15	W2 1PG, United Kingdom; Tel: +44 20 7594 3764, e-mail: s.johnston@imperial.ac.uk
16	

17 Supplementary Information Text

18 MATERIALS AND METHODS

19 Screening & Recruitment

- 20 All pregnant women were screened for eligibility at antenatal visits (8th-10th week of pregnancy) between
- 21 1995 and 1997. Of the 1499 couples who met the inclusion criteria (<10 weeks of pregnancy, maternal age
- \geq 18 years), 288 declined to take part and 27 were lost to follow-up between recruitment and birth of a child.
- A total of 1184 participants had some evaluable data(1).

24 Follow-up

- 25 Children have been followed prospectively, and attended review clinics at ages 1, 3, 5, 8, 11 and 16
- 26 years(1). We carried out home visits for study participants who could not attend clinic appointments.

27 Definitions of variables:

- 28 Younger and older siblings: Presence or absence of younger and older siblings
- 29 Maternal and paternal asthma: If parents of the individual ever suffered from asthma
- 30 *Current wheeze*: Positive answer to the question "Has your child had wheezing or whistling in the chest in 31 the last 12 months?"
- 32 *Current asthma at age 16 years:* Defined as the presence of any two of the following three features: 1)
- 33 Current wheeze; 2) Current use of asthma medication; and 3) Physician-diagnosed asthma ever.(2)
- 34 *Data from primary care medical records:* We extracted data from electronic and paper-based primary
- 35 care medical records, including emergency department admissions, and admissions to hospital. Age in
- 36 days at the time of each event was documented.(3) This data was available from birth to age 8 years.

37 Antiviral immune responses

- We collected, processed and cryopreserved peripheral blood mononuclear cells (PBMCs) at age 16 yearsin all children who agreed to provide blood samples.
- 40 *PBMC isolation*: ~8mL of venous blood was collected into a heparinised tube. PBMCs were separated by 41 centrifugation over Ficoll-Hypaque. Cell viability was determined using trypan blue and cells were 42 resuspended in freezing medium (15% DMSO in Heat Inactivated Foetal Calf Serum) at 10⁶ cells/ml and 43 cryopreserved in liquid nitrogen.
- 44 Cryobanked PBMCs were shipped for cell stimulations(3, 4). On the day of experiment PBMCs were thawed
- 45 and counted to assess viability. We used RPMI1640 with L-glutamine, HEPES, Na bicarbonate,
- 46 penicillin/streptomycin and 10% foetal bovine serum as medium control.

- 47 *Cytokines measured:* Protein concentrations of 27 cytokines were measured using the Meso Scale 48 Discovery® multiplex kits (http://www.mesoscale.com) as described(3-5). For the present analyses we
- 49 focussed on the three IFNs and four IFN-induced chemokines that were significantly induced by each of
- 50 the viruses/stimuli studied. Samples below the lower detection limit of the assay were assigned a value of
- 51 $\frac{1}{2}$ the lower detection limit.

52 Data pre-processing

- 53 *Quality control:* As previously conducted(5), we excluded 13 samples with cell viability <5% upon thawing.
- 54 Samples meeting all the following criteria were also excluded as inadequate responders: viability <20% and
- interleukin (IL)-2 response to PHA <5pg/mL and interferon (IFN)- α response to RSV <5pg/mL and IFN- γ
- response to rhinovirus-16 <7pg/mL and IL-6 response to Hin <5pg/mL (n=2). One child was excluded with
- 57 24% viability, as no cytokine response was seen to any stimulus. After quality control excluded these 16
- 58 children, we had data from 345 participants for the analysis. IFN-γ responses for some subjects were lost
- 59 due to an MSD plate malfunction (Fig. 1).
- 60 To achieve data normalisation, we subtracted the log-transformed media response for each cytokine from
- 61 the log-transformed cytokine responses to stimulation. We used these transformed values for the evaluation
- 62 of cytokine responses.

64 Supplementary Figures and tables:

65

66 Fig. S1. Cell viability between sexes.

67 Data were analysed using the Wilcoxon test. Each dot represents an individual participant. Box plots

represent the 25th and 75th percentiles, the line the median, with whiskers at the 10th and 90th percentiles.

69 Data are presented in percentages.

71

Fig. S2. Patterns of PBMC IFN-induced chemokine induction by viral stimuli, compared to medium

- 73 controls.
- 74 Data were analysed using the Wilcoxon test. Each dot represents an individual participant. Box plots
- represent the 25th and 75th percentiles, the line the median, with whiskers at the 10th and 90th percentiles.
- 76 Data are presented in pg/mL. The y axis is plotted on a logarithmic scale. Significance levels: *** P<0.001
- compared to medium.

79

Fig. S3: Sex differences in IFN-α, CCL4/MIP-1 β , CXCL10/IP-10 and CCL13/MCP4 induction in response to RV-A1 and RSV induction.

Box plots represent the 25th and 75th percentiles, the line the median, with whiskers at the 10th and 90th percentiles. Each dot represents an individual participant. Wilcoxon test: A) P=0.011, B) P=0.041, C) P=0.010, D) P=0.002, E) P=0.018 and F) P=0.019. Data are presented as fold induction. The y axis is plotted on a logarithmic scale.

88 Fig. S4: Proportions of males and females with IFN- α responses to CpG-A and RV-A1 below the

15th, **20th** and **25th** percentiles of the entire population.

P-values are derived using chi-squared tests.

92 Table S1. Comparisons of demographic and clinical characteristics between children with and

93 without PBMC stimulation data at age 16 years stratified by sex. Differences were assessed through

94 χ^2 and *t*-test for categorical and continuous variables, respectively.

	Female (n=353)		Male (n=398)			
	Cytokine data (n=128)	No Cytokine data (n=225)	<i>P</i> -value	Cytokine data (n=217)	No Cytokine data (n=181)	<i>P</i> -value
	n (%)	n (%)	χ²	n (%)	n (%)	χ²
Ethnicity - Caucasian	121/126 (96)	212/220 (96.4)	0.925	204/212 (96.2)	165/171 (96.5)	0.657
Younger siblings	70/128 (54.7)	113/225 (50.2)	0.420	112/217 (51.6)	89/181 (49.2)	0.628
Older siblings	62/128 (48.4)	108/221 (48.9)	0.938	121/215 (56.3)	94/180(52.2)	0.420
Day care attendance	91/121 (75.2)	144/219 (65.8)	0.710	153/209 (73.2)	115/163 (70.6)	0.572
Maternal smoking (pregnancy)	9/128 (7.0)	28/217 (12.9)	0.089	19/212 (9)	15/178 (8.4)	0.851
Maternal smoking (current)	10/126 (7.9)	27/225 (12.0)	0.234	29/217 (13.4)	20/181 (11.0)	0.484
Maternal asthma	23/128 (18.0)	53/225 (23.6)	0.220	39/217 (18.0)	33/181 (18.2)	0.947
Paternal asthma	22/128 (17.2)	40/225 (17.8)	0.889	29/217(13.4)	18/181 (9.9)	0.293
Dog ownership	40/127 (31.5)	84/225 (37.3)	0.271	80/216 (37.0)	71/180 (39.4)	0.623
Cat ownership	29/127 (0.3)	64/225 (28.4)	0.252	54/215 (24.1)	40/177 (22.6)	0.561
Current asthma	20/126 (15.9)	34/223 (15.2)	0.876	39/213 (18.3)	40/179 (22.3)	0.321
Current wheeze	18/126 (14.3)	38/225 (16.9)	0.523	33/215(15.3)	38/180 (21.1)	0.137
Current rhinitis	43/127 (33.9)	86/224 (38.4)	0.397	96/217 (44.2)	84/181 (46.4)	0.665
LRTI admissions	9/116 (6.7)	13/193 (7.8)	0.820	26/195 (13.3	29/147 (19.7)	0.137
RSV-positive bronchiolitis	2/116 (1.7)	3/193 (1.6)	1.000	8/195 (4.1)	7/147 (4.8)	0.795
	Mean(SD)	Mean(SD)	<i>t</i> -test	Mean(SD)	Mean(SD)	<i>t</i> -test
Age at follow up	16.0 (0.66)	16.1 (0.50)	0.698	16.1 (0.55)	15.9 (0.78)	0.085
Birth weight (kg)	3.42 (0.47)	3.32 (0.91)	0.213	3.51 (0.93)	3.57 (0.54)	0.396

96 Table S2. Results from Shapiro-Wilk normality test on cytokine data for each stimulus.

Stimulus	Cytokine	Shapiro <i>P</i> value
	IFN-α	<0.001
	IFN-β	<0.001
	IFN-γ	<0.001
RV-A16	CCL4/MIP-β	0.008
	CXCL10/IP-10	0.002
	CCL13/MCP4	0.004
	CCL2/MCP1	0.049
	IFN-α	<0.001
	IFN-β	<0.001
	IFN-γ	0.001
RSV	CCL4/MIP-β	0.008
	CXCL10/IP-10	<0.001
	CCL13/MCP4	0.001
	CCL2/MCP1	<0.001
	IFN-α	<0.001
	IFN-β	<0.001
	IFN-γ	0.032
RV-A1	CCL4/MIP-β	<0.001
	CXCL10/IP-10	0.002
	CCL13/MCP4	<0.001
	CCL2/MCP1	<0.001
	IFN-α	<0.001
	IFN-β	<0.001
	IFN-γ	0.028
R848	CCL4/MIP-β	0.001
	CXCL10/IP-10	0.001
	CCL13/MCP4	0.008
	CCL2/MCP1	0.143
	IFN-α	<0.001
	IFN-β	<0.001
	IFN-γ	0.076
CpG-A	CCL4/MIP-β	0.004
	CXCL10/IP-10	< 0.001
	CCL13/MCP4	0.001
	CCL2/MCP1	0.029

100 Table S3: Comparisons of lower respiratory tract infection (LRTI) hospital admissions and RSV

101 positive bronchiolitis cases in female and male cohort participants.

102 Differences were assessed through χ^2 and *Fishers exact test* for sample size >5 and \leq 5, respectively.

Cases	N=651 with primary care record inspection			
	Female	Male	P value	
LRTI hospital admission	n (%)	n (%)		
1st year	20/304 (6.6)	42/347 (12.1)	0.017	
2nd year	2/304 (0.7)	21/347 (6.1)	<0.001	
RSV positive bronchiolitis	5/304 (1.64)	15/347 (4.32)	0.067	

105 **Reference**s:

- 1061.A. Custovic *et al.*, The National Asthma Campaign Manchester Asthma and Allergy Study. *Pediatr*107Allergy Immunol **13**, 32-37 (2002).
- K. C. Lodrup Carlsen *et al.*, Does pet ownership in infancy lead to asthma or allergy at school
 age? Pooled analysis of individual participant data from 11 European birth cohorts. *PLoS One* 7,
 e43214 (2012).
- A. Semic-Jusufagic *et al.*, Assessing the association of early life antibiotic prescription with
 asthma exacerbations, impaired antiviral immunity, and genetic variants in 17q21: a population based birth cohort study. *Lancet Respir Med* 2, 621-630 (2014).
- 1144.J. Wu *et al.*, Relationship between cytokine expression patterns and clinical outcomes: two115population-based birth cohorts. *Clin Exp Allergy* **45**, 1801-1811 (2015).
- A. Custovic *et al.*, Cytokine Responses to Rhinovirus and Development of Asthma, Allergic
 Sensitization, and Respiratory Infections during Childhood. *Am J Respir Crit Care Med* **197**, 1265 1274 (2018).