Supplementary figures and tables for "Estimates of outbreak-specific SARS-CoV-2 epidemiological parameters from genomic data" Timothy G. Vaughan, Jérémie Sciré, Sarah A. Nadeau and Tanja Stadler Table S1: Sequence information. | Outbreak | No. se- | Date of last | Limiting public health | |---------------------|---------|--------------|--| | | quences | sequence | intervention | | Australia | 9 | Mar. 11 | Mar. 21 nationwide social distancing begins | | China | 13 | Jan. 23 | Jan. 23 Wuhan quarantined | | The Netherlands (1) | 35 | Mar. 12 | Mar. 12 schools close, large gatherings banned | | The Netherlands (2) | 51 | Mar. 12 | " | | France (1) | 31 | Mar. 16 | Mar. 16 nationwide lockdown | | France (2) | 19 | Mar. 16 | " | | Iceland (1) | 47 | Mar. 18 | Mar. 16 secondary schools close, large gatherings banned | | Iceland (2) | 17 | Mar. 18 | " | | Italy | 55 | Mar. 8 | Mar. 8 Lombardy lockdown | | Spain | 14 | Mar. 12 | Mar. 11 schools close in Madrid | | WA State (USA) (1) | 217 | Mar. 11 | Mar. 11 large gatherings banned | | WA State (USA) (2) | 9 | Mar. 11 | " | | Iran | 14 | Mar. 4 | Feb. 22 schools close, large gatherings banned | | Wales | 47 | Mar. 16 | Mar. 20 schools close | | Diamond Princess | 96 | Feb. 25 | Feb. 4 ship quarantined | Figure S1: Posterior for the number of unique R_0 values among the 15 distinct outbreaks considered, given by Bayesian model averaging. (Only the value prior to the quarantine aboard the Diamond Princess was included in this averaging.) Figure S2: Comparison of R_0 posterior distributions estimated using Bayesian model averaging. (Only the value prior to the quarantine aboard the Diamond Princess was included in this averaging.) Figure S3: Comparison of R_0 posterior distributions estimated for the preand post-quarantine phases of the Diamond Princess outbreak. Figure S4: Inferred sampling proportions corresponding to the outbreaks analyzed. Non-informative priors were used for all sampling proportions except for the one corresponding to the Diamond Princess. (See methods). Figure S5: R_0 values inferred using (a) phylodynamic method without sequence data, (b) EpiEstim (1) analysis of sequenced sample collection times, and (c) linear regression of outbreak-specific cumulative sample count distributions. (The Diamond Princess regression and EpiEstim results have been excluded from this graphic, as they relate to the post- rather than pre-quarantine phase of that outbreak.) $Figure \ S6: \ Inferred \ cumulative \ case \ trajectories \ for \ remaining \ outbreaks.$ Figure S7: Sample times relative to first sample from each outbreak. Horizontal bars represent full sample period lengths. Figure S8: Estimates of R_0 produced using alternative model in which a change in R_0 and the sampling proportion s is permitted at a point midway between the first and last samples of each outbreak. The posteriors shown are for the R_0 values in the earlier of the two intervals. Figure S9: Estimates of R_0 produced using the alternative prior Unif(0, 10), illustrating the insensitivity of the results to the precise prior used. ## References [1] A. Cori, N. M. Ferguson, C. Fraser, and S. Cauchemez. A new framework and software to estimate time-varying reproduction numbers during epidemics. *American Journal of Epidemiology*, 178(9):1505–1512, sep 2013. doi: 10.1093/aje/kwt133.