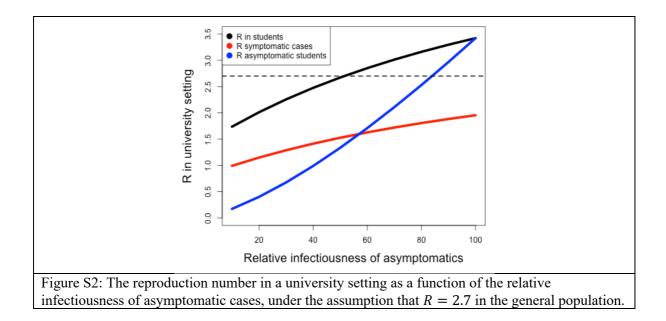
Supplementary information for High COVID-19 transmission potential associated with re-opening universities can be mitigated with layered interventions.

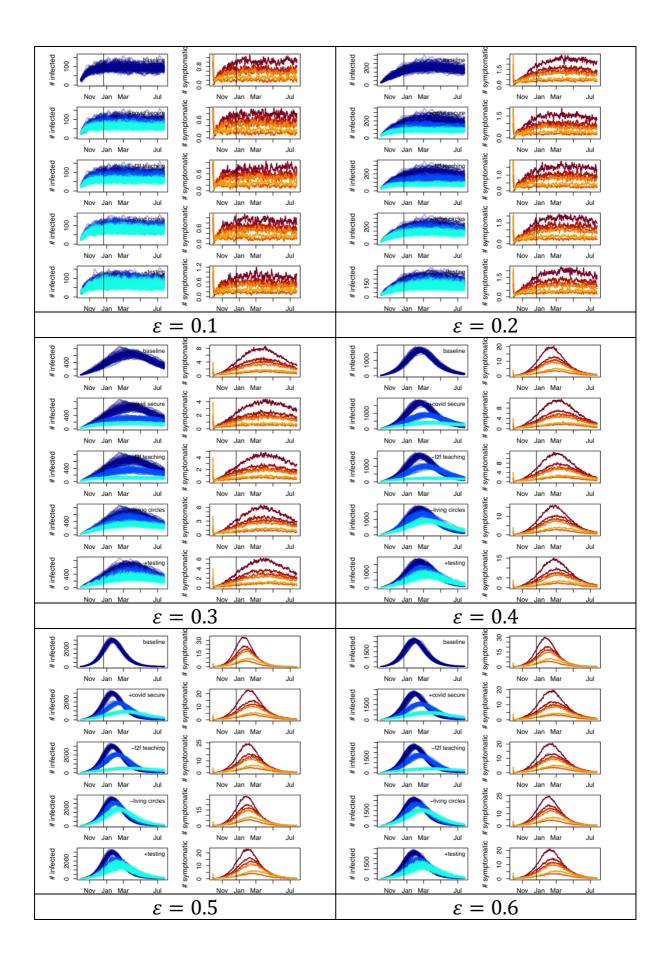
Ellen Brooks-Pollock, Hannah Christensen, Adam Trickey, Gibran Hemani, Emily Nixon, Amy Thomas, Katy Turner, Adam Finn, Matt Hickman, Caroline Relton, Leon Danon

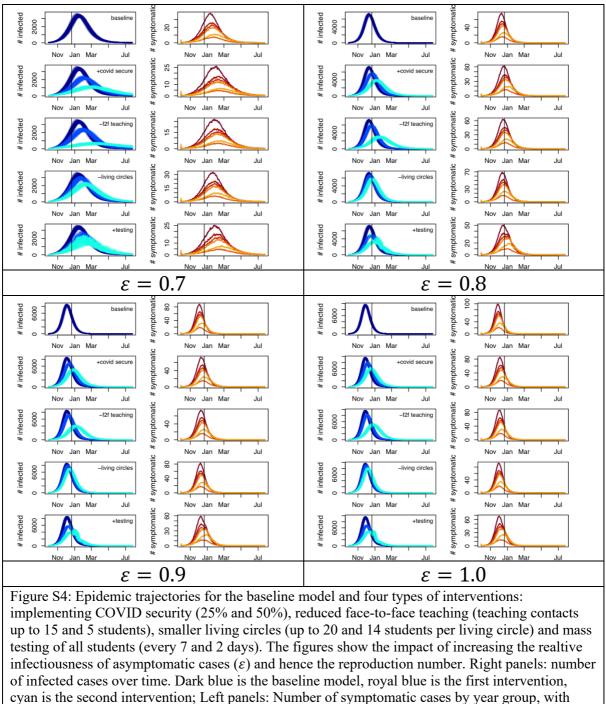

1. Data processing

The University of Bristol provided pseudonymised data relating to the academic year 2019/2020. The study complied with the University data protection policy for research studies (http://www.bristol.ac.uk/media-library/sites/secretary/documents/information-governance/data-protection-policy.pdf). We used this information to build a matrix of contacts between courses and year of study. In Figure S1 we show the schematic of how the contact matrix is built. Each line in the Raw data represents an individual student, and the columns show the relevant data fields (School name, Year, Term time postcode). This is transformed into a wide format matrix, W, where students that share accommodation, as indicated by a shared postcode, are summed up. In the final step, the wide format matrix, W, is multiplied by its transpose, W^T , and then normalised to give a household contact matrix h_{ij} . The entries of the H matrix denote the average number of contacts that a student in particular school has with any other school, through their accommodation.

Raw data				Wide format							
School name	Year	Term time postcode			p1	p2	р3				
Law	1	p1		Law.1	1	2	0				
Law	1	p2		Medicine.1	3	1	1				
Law	1	p2		weakine.1	3	1	T				
Medicine	1	p1									
Medicine	1	p1			-						
Medicine	1	p1		Contact matrix							
Medicine	1	p2				w.1	Medicine.1				
Medicine	1	p3		Law.1	0	.67	1.67				
		- F-		Medicine.1		1	1.2				

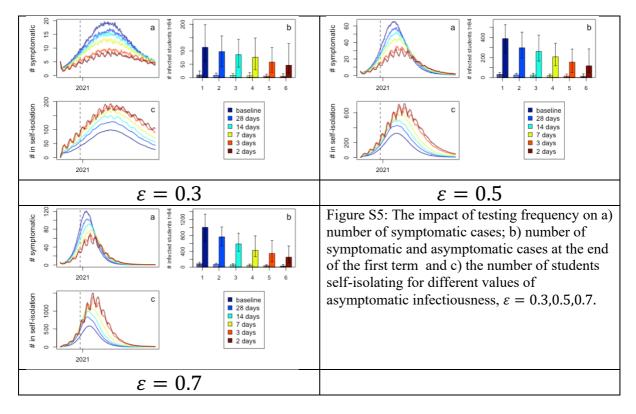
2. Estimating the reproduction number in a university setting.


In the university age population, we estimate that individuals have on average 10% more contacts than an individual in the general population using data from the Social Contact Survey. We also estimate that 25% of the cases in this population will show COVID-19 symptoms (Davies 2020). However, there is substantial uncertainty around the relative infectiousness of asymptomatic cases. In Figure S2 we vary the relative infectiousness of asymptomatic individuals under the assumption that they are less infectious than symptomatic individuals, and assess the impact on R in the university Rv. Beginning with the reproduction number in the general population, R = 2.7, we observe that in the University population, Rv varies between 1.7 when ε =0.1 (due to the reduced infectiousness of asymptomatic cases), and 3.4 when ε =1 (due to the increased number of contacts in the university population).



3. Sensitivity to model parameters and impact of asymptomatic transmission on model dynamics

Figure S3 shows the model sensitivity to parameter variation. Because the relative infectiousness of asymptomatic cases, the parameter ε , was the most uncertain and a key parameter for this population, we performed extensive simulations to analyse the sensitivity of our model to this parameter (figure S4). The results are summarised in Figure S4 below. For low values ε (0.1 - 0.2), the epidemic peak is small and the epidemic continues at a low level throughout the academic year with the expected number of symptomatic cases barely rising above 1. For low-intermediate values of ε (0.3-0.5) the peak number of cases rises rapidly, and the epidemic increases in speed, peaking after the Christmas break. For high values of ε (0.6 and above) the epidemic peak is at or just before the Christmas break in the baseline case. The highest number of cases at Christmas is observed for $\varepsilon = 0.7$ in the baseline case. For $\varepsilon = 1$, a peak at Christmas is observed when mitigation strategies are implemented.



darker colours

4. Impact of testing frequency

To assess the robustness of our results, we performed sensitivity analysis of the relative asymptomatic infectiousness, as captured by ε on the results of impact of testing frequency. We considered three values of ε , shown below in figure S5.

SCENARIO				# symp cases at				# asymp cases			R_xm			RANK				doubling time					
NUM	INTERVENTION	EPSILON	Ru	xmas (mean)	min	max	# symp cases	at xmas (mean)	min	max	as (%)	min	max	RX	growthrate	min	max	(days)	min	max	R_end (%)	min	max
1	baseline	30	2.25	13	4	23	9	150	100	230	4.8	3.4	6.7	9	0.053	0.022	0.089	13	7.8	32	34	29	38
2	CS25	30	2.25	7.5	2	17	4	95	52	140	3.3	2.4	4.4	3	0.046	0.022	0.077	15	9	32	19	15	23
	CS50	30	2.25	4.8	0	10	2	61	38	100	2.4	1.9	3.3	2	0.041		0.078	17	8.9		11	9.5	13
	f2ft15	30	2.25	8.4	2	16	6	100	73	150	3.5	2.7	4.6	5	0.047	0.009	0.068	15	10	78	21	17	25
	f2ft5	30	2.25	3.9		11	1	50	31	73	2.1	1.7	2.6	1	0.037		0.071	19	9.8		8.5	7.5	9.7
	LC20	30	2.25	10	2	22	8	130	79	180	4.1	3	5.5	8	0.053	0.023	0.088	13	7.9	30	27	22	32
	LC14	30	2.25	8	2	21	5	98	50	160	3.4	2.6	4.6	4	0.047	0.017	0.081	15	8.6	41	20	16	24
	Т7	30	2.25	9.8		20	7	98	47	190	4.1	2.6	6.1	7	0.025		0.072	28	9.6		28	23	34
	T2	30	2.25	6.4	1	27	3	66	25	140	3.7	2.7	4.9	6			0.086		8.1		24	20	28
	baseline	50	2.67	71		100	9	820	590	1000	19	13	24	9	0.073	0.028	0.1	9.5	6.9	25	73	71	
	CS25	50	2.67	35		53	5	410	270	550	10	7.4	13	5	0.065	0.04	0.091	11	7.6	17	60	58	63
	CS50	50	2.67	16		36	2	200	120	300	5.7	4	7.7	2	0.057	0.029	0.086	12	8.1	24	41	36	44
	f2ft15	50	2.67	39		60	/	460	320	620	11	7.8	16	6	0.067	0.032	0.1	10	6.9	22	63	61	65
	f2ft5	50	2.67	11	4	20	1	130	80	200	4.2	3.1	5.3	1	0.049	0.025	0.077	14	9	28	28	24	31
	LC20	50	2.67	54		80	8	640	430	820	15	11	19	8	0.071	0.041	0.11	9.8	6.3	17	70	68	72
	LC14 T7	50	2.67 2.67	34 37		55	4	410	220	600	10	6.2	14	3	0.066	0.04	0.095	11	7.3	17	62	60	64
	T2	50		27		79 60	6	360	240	750	13	9.3	19	4	0.044	0.006	0.083	16 58	8.4	120	69 65	67	72
	baseline	50 70	2.67 3.01	27			3		83	490	10 59	7	15 66		0.012	-0.03	0.076		9.1 5.8	10		61 88	67 90
	CS25	70	3.01	140		280 180	5	2600 1700	2300 1400	2800 1900	36	48 28	44	9 5	0.094 0.083	0.067	0.12	7.4 8.4	6.3	10	89 82	80	83
	CS50	70	3.01	68			3	790	480	1300	18	11	23		0.083	0.033	0.11	9.8	6.3	15	70	68	71
	f2ft15	70		160		200	7	1900	1500	2100	40	31	48		0.071	0.043	0.11	8.3	6.3	13	83	82	85
	f2ft5	70	3.01	40		61	1	480	360	650	12	8.7	15	1	0.064	0.032	0.1	11	6.9	22	61	59	63
	LC20	70	3.01	190		240	8	2300	1900	2500	50	39	57	8	0.089	0.058	0.12	7.8	5.8	12	87	86	
	LC14	70	3.01	140		170	6	1600	1200	1900	35	24	43		0.083	0.051	0.12	8.4	5.8	14	84	83	84
	Τ7	70	3.01	130		160	4	1200	1000	1300	42	33	48	7	0.066	0.036	0.092	11	7.5	19	87	86	88
9	T2	70	3.01	58		180	2	500	320	1700	28	19	40	3	0.031	0.002	0.081	22	8.6	410	84	83	8
1	baseline	100	3.4	130	90	170	1	2000	1600	2500	94	92	94	9	0.12	0.098	0.15	5.8	4.6	7.1	97	96	97
2	CS25	100	3.4	210	150	250	7	2800	2300	3200	84	80	88	4	0.11	0.085	0.14	6.3	5	8.2	94	94	9
3	CS50	100	3.4	220	180	260	8	2700	2500	2900	62	51	70	2	0.094	0.069	0.12	7.4	5.8	10	88	87	8
4	f2ft15	100	3.4	200	140	260	6	2700	2100	3200	86	82	89	6	0.11	0.081	0.13	6.3	5.3	8.6	95	94	9
5	f2ft5	100	3.4	180	140	240	4	2200	1900	2500	47	36	57	1	0.087	0.034	0.12	8	5.8	20	83	82	84
6	LC20	100	3.4	160	120	220	3	2300	2000	3000	91	89	93	8	0.12	0.099	0.14	5.8	5	7	96	96	97
7	LC14	100	3.4	220	170	280	9	2900	2400	3300	85	81	88	5	0.11	0.078	0.13	6.3	5.3	8.9	95	94	9
8	т7	100	3.4	180	140	250	5	2000	1500	2400	87	83	89	7	0.096	0.07	0.12	7.2	5.8	9.9	96	96	9
9	T2	100	3.4	140	85	220	2	1200	740	2100	74	68	79	3	0.059	0.025	0.084	12	8.3	28	95	94	95
Table S1: Values of model outputs by intervention scenario and relative infectiousness of asymptomatics.												of as	symp	otoma	atics.								